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Regionalization of Surface-Water Statistics Using 
Multiple Linear Regression

By William H. Farmer, Julie E. Kiang, Toby D. Feaster, and Ken Eng

use regional information to provide approximate values for 
hydrologic variables at ungaged locations. This report describes 
multiple linear regression as used by the USGS to estimate 
streamflow statistics. Although other techniques for regionaliza-
tion of surface-water statistics exist, they are not as commonly 
used within the USGS and are only mentioned in this report. 

What is Regression?

Regression is a statistical method for describing and 
quantifying the observed relationships and dependent vari-
ability between two or more variables. Regression can be 
used to predict the value of one variable, referred to as the 
“response variable,” based on the value of one or more 
other variables, referred to as the “explanatory variables.” 
The terms “response” and “explanatory” describe the vari-
able relationships; variations of these names are described 
in the “Streamflow Statistics as Response Variables” section 
of this report. (Useful definitions of common terms can be 
found in appendix 1.) The estimates derived from regres-
sion analysis are approximations of the conditional mean 
of the response variable given the fixed quantities of the 
explanatory variables. For example, a regression of the annual 
maximum streamflow with an annual exceedance probability 
of 1 percent predicts the mean value of the annual maximum 
streamflow for a given set of explanatory variables. Regres-
sion analysis can also be used to describe the partial effects of 
explanatory variables on the response variable. More com-
monly, especially for surface-water problems, a regression 
model is typically developed so that the response variable, 
which may otherwise be hard to obtain, can be approximated 
from more readily available information. In this way, regional 
hydrologic information can be used to characterize intermit-
tently gaged or ungaged watersheds. 

Multiple linear regression is used to describe the linear 
dependence of a response variable on a set of explanatory 
variables. The process is termed “multiple” because more 
than one explanatory variable is used and “linear” because it 
is assumed that the relationships between the response and 
explanatory variables can be approximated by a straight line. 
However, as will be discussed in the “Model Estimation” 
section of this report, linearity can be achieved through vari-
able transformation. 

Abstract

This report serves as a reference document in support 
of the regionalization of surface-water statistics using mul-
tiple linear regression. Streamflow statistics are quantitative 
characterizations of hydrology and are often derived from 
observed streamflow records. In the absence of observed 
streamflow records, as at unmonitored or ungaged locations, 
other techniques are required. Multiple linear regression is 
one tool that is widely used to regionalize or transfer informa-
tion from gaged to ungaged locations. This report provides 
the background to support regression-based regionalization of 
streamflow statistics. This background includes tools for data 
assembly, exploratory data analysis, model estimation in a 
least-squares framework, and model evaluation.

Introduction
Typically derived from streamflow records, streamflow 

statistics are quantitative characterizations of hydrologic 
phenomena at point locations along stream networks and in 
contributing areas. Engineers, planners, and regulators com-
monly use streamflow statistics to inform a wide array of proj-
ects, including design of water resource systems (for example, 
water treatment facilities), design of flood control projects, 
design of infrastructure (for example, bridges, culverts) and 
risk assessments in many different hydrologic contexts.

Streamflow statistics can be computed directly from 
observed, at-site streamflow records when sufficiently long 
records are available for streamflow-gaging stations (commonly 
abbreviated as streamgages). However, as shown by Kiang and 
others (2013), such data are not always available. For example, 
the historical record of streamflow may be short, resulting in 
poor estimates, or locations may be completely ungaged. How-
ever, it is often possible to leverage regional hydrologic infor-
mation to supplement or improve limited at-site information. 

Multiple linear regression is one technique commonly used 
by the U.S. Geological Survey (USGS) to estimate streamflow 
statistics using regional information. Hydrologic characteriza-
tions using multiple linear regression for regional interpolation 
are often referred to as “regionalization studies” because they 
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There are numerous mathematical methods to fit a 
straight line to a set of observations, each observation being a 
coupled realization of the response variable and the explana-
tory variables. These methods can be used, for example, to 
minimize the greatest absolute deviation or minimize the sum 
of the deviations of observations from the fitted line. One of 
the most frequently used methods for linear fitting, largely 
because of its strong theoretical underpinnings, is least-squares 
regression. This approach seeks to minimize the sum of the 
squared deviations from the fitted line. Least-squares regres-
sion is the method used most widely in the USGS and may be 
the most widely used in general.

There are several variations of least-squares regression 
that differ in how each observation is weighted in the analysis. 
The USGS commonly uses three approaches for surface-
water applications: ordinary least-squares (OLS) regression, 
weighted least-squares (WLS) regression, and generalized 
least-squares (GLS) regression. The simplest form of least 
squares, OLS, weights all observations equally. WLS goes 
beyond OLS by assigning larger or smaller weights to dif-
ferent observations. One such approach is to assign weights 
based on the length of the streamflow records used to compute 
each streamflow statistic; this approach assumes that longer 
periods of record tend to produce more accurate estimates of 
the response variable in question. Finally, GLS also assigns 
weights based on the mutual dependence of the observations. 
As discussed in the “Variable Selection” section of this report, 
codependence in streamflow characteristics can arise from 
spatial proximity of streamgages (for example, streamgages 
upstream or downstream from other ones).

OLS, WLS, and GLS are all standard regression 
techniques that are used by the USGS for regionalization 
studies. Researchers have developed specialized methods of 
assigning weights that work well for the specific task of esti-
mating streamflow statistics using regression. The remainder 
of this report describes the basic components of a regression 
analysis, as well as the specialized methods for surface-water 
datasets. Although the general approach to regression analysis 
described in this report can be applied to other types of data 
(for example, indicators of water quality or sediment con-
centrations), techniques for assigning weights that have been 
tailored for estimation of streamflow statistics may not be 
applicable to other problems without modification.

There are many computer programs that can be used 
to develop regression models. This report does not provide 
information on the use of any particular program. Rather, the 
report provides information on how to set up a regression-
based regionalization analysis, choose an appropriate model, 
and interpret the results. The USGS has developed computer 
programs that can assist in regression analysis. The weighted-
multiple-linear regression (WREG) program was tailor-made 
for use with hydrologic variables and can be used to set up and 
evaluate OLS, WLS, and GLS regressions (Eng and others, 
2009). In addition to WREG, a basic computer program for 
statistical analysis will be useful to complete the initial steps 
of a regression-based regionalization study.

Framework for a Regression-Based 
Regionalization Study

The iterative process of a regression-based regional-
ization study is represented in figure 1. The process can 
be divided into three major tasks: assembling data; model 
development, including conducting exploratory data analy-
sis, model estimation, and model evaluation; and model 
application and documentation. Assembling input data 
(described in the “Data Assembly” section) may require 
using geographic information systems, as well as methods 
for estimating streamflow statistics, and may take a consid-
erable amount of time and resources. Model development 
involves the selection and prioritization of explanatory 
variables, estimating coefficients, and evaluating predictions. 
Exploratory data analysis (described in the “Exploratory 
Data Analysis” section) is an important part of a regression 
study because familiarity with the data can guide decisions 
when developing and interpreting the model. The principles 
of model estimation and model evaluation (the most iterative 
step) are described in the “Model Estimation” and “Model 
Evaluation” sections. Model evaluation sometimes instigates 
further data analysis and estimation. The first attempt to 

Data assembly

Exploratory
data analysis

EstimationEvaluation

Model development

Application and documentation

Figure 1. Diagram showing a generalized work flow for a 
regression-based regionalization study.
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develop a regression model rarely results in the best or final 
model. Careful analysis of the model results and subsequent 
refinement of the model can result in improved predictive 
power of the regression model. Finally, model application 
and documentation are described in the “Model Application 
and Documentation” section. The guidance provided in this 
report is intended to ensure that the process used to develop 
the final regression model is fully documented with sufficient 
detail to be easily reproduced. 

Description of an Example Dataset

The examples in this report are drawn from observed 
streamflow data and the GAGES-II dataset of geospatial 
attributes for evaluating streamflow (Falcone, 2011). Daily 
streamflow information was drawn from 300 sites across the 
continental United States with 60 years of complete daily 
records from October 10, 1956, to September 30, 2016. 
For each site, the annual maximum daily streamflow was 
selected. From this record of maximums, the 90th percentile 
was taken as representative of the 10-year event and used 
as the response variable. For regression, the GAGES-II 
dataset (Falcone, 2011) provides several possible explanatory 
variables: drainage area (DRAIN_SQKM), basin-averaged 
precipitation (PPTAVG_BASIN), basin-averaged tempera-
ture (T_AVG_BASIN), at-site temperature (T_AVG_SITE), 
basin-averaged relative humidity (RH_BASIN), median 
relief ratio (RRMEDIAN), and average March precipitation 
(MAR_PPT7100_CM). The example regression is based on 
a logarithmic transformation of the response variable and a 
logarithmic transformation of drainage area. Data for this 
example can be obtained from Farmer (2019).

Data Assembly
The assembly of input data is the first step of a 

regression-based regionalization study. This process includes 
the identification of suitable study areas, sites, and regions, as 
well as the collection and processing of requisite data. Related 
to this selection process, and often done in tandem, is the iden-
tification of the streamflow statistics that will be estimated as 
response variables in the region. Additionally, suitable descrip-
tors of the watersheds and the climate in the region are needed 
for use as explanatory variables. At times, both explanatory 
and response variables are already computed. However, there 
are times when the response variable needs to be derived 
by methods beyond the scope of this report (for example, 
the computation of flood-frequency statistics is described in 
Bulletin 17C (England and others, 2018) or considerable effort 
is required to determine potential explanatory variables. In 
addition to detailing the terminology used to describe these 
processes, the following subsections outline the appropriate 
concerns for the assembly of input data for a regression-based 
regionalization study.

Region Definition and Site Selection 

Regression models are defined for a specified domain: 
spatial, temporal, physiographic, or some combination thereof. 
When considering the spatial domain, it is ideal to start with 
the largest reasonable region. However, it is always possible 
to consider subregionalization to further refine the domain. 
In addition to spatial domains, regression analyses often are 
tied to specific temporal domains (for example, the period of 
record over which observations were made). A conventional 
goal is to define regions to minimize the degree of unexplained 
variability in the response variable or to minimize or eliminate 
bias in regression estimates. After a region is defined, it is not 
advisable to extrapolate beyond the region by using regression 
models outside the target spatial, temporal, and physiographic 
bounds. Extrapolating the models outside the defined bounds 
will require additional analysis. 

After a region is defined, the sites and streamgages from 
which to compile data on the response and explanatory vari-
ables are selected. The purpose of the regression model should 
be kept in mind during the site and streamgage selection 
process. For example, regression models are most commonly 
used to estimate natural streamflow conditions. In such cases, 
there is an implicit assumption that the data used to develop 
the regression equation are representative of natural systems. 
Alterations to natural streamflow resulting from human 
modifications, such as reservoirs, withdrawals, discharges, or 
other nonnatural alterations, can invalidate this assumption. 
Consequently, regressions used to estimate natural stream-
flow conditions should rely only on streamgages that are not 
substantially affected by human modifications in the water-
shed. Although the definition of “substantial effects” may be 
somewhat subjective, every effort should be made to present a 
justifiable defense.

Conducting a regression-based regionalization study 
that includes altered watersheds is not appropriate without 
attempting to account for those alterations in the regression. 
For example, if watersheds with substantial urbanization are 
included, information on the degree of urbanization may be 
captured in land-use information, population-density informa-
tion, or other variables. Although the streamflow statistics 
predicted from such models are not derived from purely 
natural processes, the explanatory variables provide a means 
of describing and accounting for the degree to which changes 
to the landscape affect hydrological processes in the basin. 
However, it is not entirely accurate to identify streamgages as 
categorically altered or unaltered. Within the realm of altered 
watersheds there may exist a wide range of types or degrees of 
alteration, producing variability that may not be accounted for 
by, or appropriate in, a single regression model.

One of the primary concerns in the process of site 
selection for regression-based regionalization studies is the 
length of record. Streamflow statistics can be interpreted as 
representative only of the period of record used to compute the 
statistic. In this case, use of a common base period for all sites 
within a region may be appropriate, such as the mean flow for 
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the period 1951–2000. More commonly, computed streamflow 
statistics are intended to be indicative of long-term conditions, 
and sites selected for use in regionalization studies have differ-
ent record lengths. 

Natural variability in streamflow, often driven by multi-
decadal wet and dry shifts in climate (for example, Mauget, 
2003; McCabe and Wolock, 2014), using different periods of 
record can result in time-sampling errors. As such, the length of 
record used to compute streamflow statistics can have a direct 
effect on the accuracy of those statistics. Closely related to 
the length of record, time-sampling errors tend to be larger for 
streamflow statistics describing rare or unusual conditions than 
for streamflow statistics describing commonplace conditions. 
That is, although streamflow statistics describing rare events 
may differ considerably when different periods and lengths of 
record are used, streamflow statistics describing commonplace 
events generally will be less variable. As an example, the long-
term mean annual streamflow can be more reliably estimated 
from a shorter record length than the instantaneous-peak 
streamflow that has a 1-percent annual probability of exceed-
ance. Whatever the streamflow statistic, a long period of record 
is desirable as long-term persistence, as well as episodic condi-
tions, may significantly affect the ultimate statistic.

The USGS generally advises that at least 10 years of data 
be available to fit a frequency curve and estimate recurrence-
interval statistics (Riggs, 1972; U.S. Interagency Advisory 
Committee on Water Data, 1982). Other authors have 
suggested a minimum length of 15 years (Kennard and others, 
2010), though the appropriate length largely depends on the 
statistic of interest. In general, 10–15 years of data should 
be considered a minimum record length for calculation of 
streamflow statistics used in regression-based regionalization 
studies in which the goal is to estimate streamflow statistics 
representative of long-term conditions. For some statistics (for 
example, regional skews), a period of 25 years may be more 
appropriate. If data are available at enough streamgages, a 
longer minimum record length can be specified for a particular 
study. In any case, a defensible justification and documenta-
tion of the minimum record length should be included in any 
regression-based regionalization study.

Commonly, streamflow characteristics are calculated 
from either (1) the longest available period of homogeneous 
record for each streamgage, or (2) a fixed range in time for 
all streamgages. When using the longest homogeneous period 
of record at each streamgage, the maximum information 
available at each streamgage is used, which minimizes the 
sampling error of the streamflow estimate at each streamgage. 
However, calculating statistics using different time periods 
across sites and different lengths of record can introduce addi-
tional noise into a regression model that is difficult to address 
appropriately. For example, consider changing climates or 
land uses over the period of record. Errors in the fit of the 
regression line may result from these climatic shifts or land-
use changes and not from differences in the explanatory vari-
ables, as presumed by the regression model. Use of a uniform 
period of record may help to minimize some of these issues, 

but time-sampling errors will be larger than necessary for 
streamgages where records are short. Furthermore, using the 
same period of record for all stations may artificially increase 
the cross correlations among the streamgages, effectively 
limiting information content. 

Finally, the length and period of record also may dictate 
the basin characteristics and climate attributes used as explan-
atory variables. Explanatory variables used in the regression 
analysis should be representative of basin conditions during 
the period of record used to derive the streamflow characteris-
tics used as response variables. Failure to consider the period 
of record may lead to use of less than optimal explanatory 
variables and substantially weaken model performance or 
inadvertently misguide inferential analysis.

Record Extension and Augmentation
Although every effort should be made to identify sites 

with a sufficient length of record, specialized techniques have 
been developed for short-term and partial-record streamgages. 
Although definitions differ, short-term, continuous-record 
stations are those with less than approximately 10–15 years 
of record. Because statistics calculated from shorter records 
generally are not as accurate as those calculated at stations with 
longer records, time-sampling errors associated with short-term 
streamflow records can result in substantial biases. Additional 
statistics can sometimes be estimated for sites with short-term 
records by “augmenting” the record with information from 
a long-term, continuous-record site. Examples of techniques 
that have been used to augment streamflow records include the 
maintenance-of-variance extension (Hirsch, 1982) and base-
flow correlation techniques (Stedinger and Thomas, 1985).

Noncontinuous streamflow records are available at 
crest-stage streamgages and at low-streamflow, partial-
record streamgages. A crest-stage streamgage is designed to 
record stages of all peaks above a set base elevation at the 
streamgaging location, including annual peaks. Provided the 
crest-stage streamgage is adequately maintained, it is appro-
priate to treat peak-streamflow records from a crest-stage 
streamgage similarly to a continuous-record streamgage for 
regional regression. However, at partial-record streamgages at 
sites with low streamflow, measurements are made somewhat 
sporadically during low-flow periods, and these measure-
ments sometimes do not correspond with the timing of annual 
minimum flows. Similar to short-term, continuous-record 
stations, information from a long-term, continuous-record 
station can be used to augment streamflow records at partial-
record stations (Tasker, 1975).

Streamflow statistics for short-term, continuous-record 
streamgages or partial-record streamgages can be augmented 
with estimates derived from record augmentation techniques. 
These estimates can be used in a regression study if it can 
be demonstrated that they extend the range of the regression 
model by extending or filling in gaps in the range of response 
and explanatory variables. Estimates from augmented records 
should not be used simply because they exist, as estimates 
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can degrade the accuracy of a regression model if they are not 
properly weighted to account for cross correlations among 
streamgage statistics. Current methods for assigning weights 
and estimating cross correlations are imperfect. Vogel and 
Kroll (1991) provide a discussion of the advantages and 
disadvantages of record augmentation with respect to cross 
correlations. In the end, this decision is highly subjective and 
extreme caution is advised.

Nested Basins
Another complication for site selection is the prevalence 

of nested basins. Streamgages on the same stream or river 
system, where a smaller drainage is completely contained, 
or nested, within a larger drainage, can contain redundant 
information. This redundancy can negatively affect the 
regression analysis, and so can be considered when select-
ing streamgages for inclusion in the regression analysis. If 
two streamgages are immediately upstream or downstream 
from one another, drain comparable basin areas, and include 
a similar period of record, they should not both be included 
in the development of a regression model. The farther apart 
the streamgages are, the more dissimilar the basin attributes 
and streamflow are likely to become. A headwater streamgage 
may be quite different from a main-stem streamgage in terms 
of both streamflow and basin attributes, so both could be 
included in development of a regression model. Simple met-
rics, such as used by Parrett and others (2011), can be used to 
help screen for possibly redundant sites.

Some judgment is required in identifying closely related, 
redundant basins. One commonly used criterion is to include 
streamgages on the same river system only if their drain-
age areas differ by at least a factor of two (Sauer, 1974). 
That is, the size of the smaller basin would be no more than 
50 percent of size of the larger basin. More stringent criteria 
are also reasonable, but less stringent criteria are not sug-
gested (Sauer, 1974; McCuen and Levy, 2000). The simplest 
method for deciding which streamgage to retain in the analysis 
is to choose the one with the longest period of record based 
on the assumption that the data from the station with the 
shorter record is mostly concurrent with the station with the 
longer record. In addition, it may be useful to consider which 
streamgage best extends the range of basin attributes used in 
the analysis. If the records are not concurrent, the determina-
tion to use all available records has been made, and there are 
no other concerns, both stations should be included in the 
analysis. However, the errors in the resulting regression should 
always be evaluated for correlation.

Streamflow Statistics as Response Variables

Regression models are mathematical descriptions of the 
relationships between a response variable and one or more 
explanatory variables. The term “response variable” is used 
because the variable responds to changes in other variables but 
other names are also used. The response variable is also known 

as a dependent variable because its magnitude depends on the 
magnitude of other variates. Because it is often displayed on 
the vertical or Y axis of a bivariate plot, the response variable 
is also known as the Y variable. Finally, the response variable, 
because it is the predicted quantity, is also known as the predic-
tand. Although all terms are valid, the variable is known as the 
response variable in this report to maintain consistency.

In a regression-based, surface-water regionalization 
study, the response variable of interest is typically a stream-
flow statistic. Examples of statistics that a hydrologist may 
be interested in estimating from a regression model include 
the mean annual streamflow, the flood that has a 1-percent 
annual exceedance probability, and an annual low streamflow 
of specified frequency of occurrence. Streamflow-duration 
statistics or percentiles are other commonly estimated stream-
flow statistics. The desired statistics will be calculated for 
the available streamgages in the region of interest prior to 
building the regression model. Specific methods for calculat-
ing streamflow statistics are not discussed in this report but 
the selected methods are an important element of a regression 
study, as the quality of the input data will affect the quality of 
the regression estimates. Consequently, every effort should be 
made to ensure that streamflow statistics are calculated in an 
accurate and consistent manner and “suspect data” should be 
reviewed and removed if warranted. When data are removed 
from an analysis, the reason for the removal should be 
documented in accordance with standard policies of quality 
assurance and control. 

The USGS has been conducting regionalization studies 
using regression techniques for many years. Benson and Carter 
(1973) summarize studies prior to publication of their report. 
They state that the desired accuracy of a regression model 
is the degree of uncertainty obtained when calculating that 
statistic from a 10-year record. In general, this goal was most 
often met in the eastern United States for mean annual stream-
flow, mean monthly streamflow, and 50-year flood. Regression 
estimates of the mean annual streamflow had the lowest uncer-
tainty. Benson and Carter (1973) found that low streamflows 
are most difficult to estimate, and none of the studies available 
at the time met the criteria of producing estimates with uncer-
tainties equivalent to those obtained using 10 years of observed 
streamflow record. They attributed the difficulty to an inability 
to adequately describe aquifer characteristics critical to low 
streamflows with regionally available data. 

Basin Attributes as Explanatory Variables
Similar to response variables, explanatory variables 

are known by several different names. They are explana-
tory because, in the context of the regression model being 
developed, they explain the variability in a response variable. 
In the context of regression, explanatory variables do not 
depend on the variability of a response variable, so they are 
called independent variables. Because they are customarily 
plotted on the horizontal or X axis of bivariate plots, explana-
tory variables can be denoted as X variables. Because they 
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produce a prediction of the response variable, they can be 
called predictors. Finally, because they are regressed upon to 
produce estimates of the response variable, they can be called 
regressors. In this report, for consistency, they are known as 
explanatory variables.

The purpose of a regression-based, surface-water region-
alization study is to predict the value of a streamflow statistic 
from readily available data that describe the watershed. In this 
way, these watershed characteristics, or basin attributes, act 
as explanatory variables. These may include variables such 
as drainage area, mean annual precipitation, or a variable 
that characterizes the underlying soils or geology. Although 
regressions are purely statistical, every effort should be made 
to consider explanatory variables that have a plausible hydro-
logic linkage to the response variable. Rarely are hydrologic 
processes governed by linear mechanistic processes, but the 
inclusion of explanatory variables with plausible hydrologic 
linkages aids model interpretation.

Calculating the values of explanatory variables typically 
relies heavily on the use of geographic information systems 
and previously published data for the region. Specific meth-
ods for calculating the values of explanatory variables are 
not described in this report. For use in a regression model, 
explanatory variables should be relatively easy to calculate 
for an ungaged location. In addition, it is preferable to use 
explanatory variables that can be calculated with relatively 
small errors. That is, explanatory variables that are difficult to 
measure or have high uncertainty are less desirable.

The least-squares-regression methods described in this 
report assume that the explanatory variables are measured 
without error. Errors can affect the accuracy of the regression 
model and estimates of its uncertainty. Issues can include 
biased estimates of model coefficients (Allison, 1999, p. 55). 
Draper and Smith (1981, p. 7 and 124) suggest that, although 
the assumption that there is no error in explanatory variables 
is rarely met in practice, adequate models can be developed if 
the errors are small compared to the range of observed values 
of the explanatory variable. If this criterion cannot be met, 
the variable should not be used in a least-squares-regression 
model. A discussion of ways to manage uncertainty in explan-
atory variables is beyond the scope of this report.

Many basin attributes have the potential to influence 
streamflow and can be considered as explanatory variables. For 
surface-water streamflow statistics, explanatory variables can 
generally be classified into a few broad categories: (1) basin 
geometry, including drainage area, slope, and elevation; (2) cli-
matological, including precipitation, temperature and potential 
evapotranspiration; (3) land-cover descriptors, including land 
use, soils, and geology; and (4) available storage, including 
quantifications of the coverage and presence of lakes, ponds, 
and other open water. Many permutations of these variables 
can be developed, but it is generally not necessary to test every 
possible variable. Selecting one or two variables associated 
with a hydrologic process should be sufficient to determine 
if that class of variable is worth further consideration. Report 
authors should consider providing theorized descriptions of 

how their selected explanatory variables are expected to be 
related to variations in the regionalized streamflow statistics.

Other descriptors of streamflow, such as the variability 
in streamflow or the average rate of recession, are sometimes 
used. Even though these can be powerful indicators and 
may be easily calculated at streamgages, they are difficult to 
estimate at ungaged locations, so their applicability is limited. 
As such, using streamflow-derived variates as explanatory 
variables is discouraged. If such variables are considered, the 
effects of uncertainty in the estimated value of the variable at 
ungaged locations should also be evaluated, quantified, and 
incorporated using advanced techniques.

Benson and Carter (1973) compiled information from 
previous USGS studies on basin characteristics most commonly 
used in regression-based regionalization studies. They found 
that drainage area was uniformly the most widely used vari-
able, regardless of whether mean annual streamflows or flood 
streamflows were being predicted. Measures of precipitation, 
land cover, and elevation or slope were also widely used. In 
northern areas of the United States, a measure of snowfall was 
an important explanatory variable. The region of interest, under-
lying processes, and selected response variable are important 
considerations in selecting appropriate explanatory variables.

Kiang and others (2013) summarized basin characteristics 
that were used in models that have been entered in the USGS 
National Streamflow Statistics Program (http://water.usgs.gov/
software/NSS/). Models were summarized for peak stream-
flows (1-percent and 10-percent exceedance probability 
flows), low streamflows (7Q10—7-day minimum flow that 
happens on average only once every 10 years), and average 
streamflows (mean and median annual streamflows). Although 
peak-streamflow models were available for nearly all states 
in the United States, low streamflow and average streamflow 
models were available for only about one-third of the states. 
Consistent with Benson and Carter (1973), Kiang and others 
(2013) found that drainage area was nearly always included 
as an explanatory variable. Measures of precipitation, eleva-
tion, and slope were also commonly included as significant 
variables for all types of streamflow. Less commonly used, but 
also appearing in many models, were variables describing the 
soils in the basin, land cover, and the amount of water stor-
age available in the basin. Other variables included measures 
of the basin shape, indicators of geology, and streamflow 
indices. When considering which variables to use for regres-
sion models, it may be useful to explore previously developed 
equations found in the National Streamflow Statistics Program 
and related publications.

Exploratory Data Analysis
After assembling the relevant data, candidate variables can 

be qualitatively evaluated for use as explanatory variables in a 
regression model. This process, exploratory data analysis, helps 
to develop a basic understanding of how the variables relate 
to one another and to the response variable. Multiple linear 

http://water.usgs.gov/software/NSS/
http://water.usgs.gov/software/NSS/
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regression techniques require that the relationship between 
response and explanatory variables be linear. Sometimes a 
transformation of the response variable, explanatory variables, 
or both will help to linearize the relationships; the need for such 
a transformation will be made apparent through the intuition-
developing process of exploratory data analysis. Further, explor-
atory data analysis will help identify dependencies within the 
explanatory variables. Dependencies, which should be avoided, 
are discussed in the “Variable Selection” section. 

Before starting the exploratory data analysis, it is impor-
tant to consider possible errors in the candidate explanatory 
variables. Hopefully, quality assurance in the data assembly 
phase addressed any major concerns, but additional checks 
may be required. Viewing data graphically can help to identify 
errors in the data. For example, a plot of the annual time series 
used to calculate streamflow statistics may reveal an unusu-
ally high or low value, often called an outlier, or a sudden 
or gradual change in the magnitude of the streamflow over 
time. Any data that do not conform to expectations should be 
checked to be sure there is not an error. However, data should 
not be removed without strong evidence of inaccuracy. Com-
plete documentation of such conditions is required.

Exploratory data analysis begins with an assessment of 
the response variable dependence on each explanatory vari-
able and the dependence among explanatory variables. Unlike 
least-squares regression, this exercise is typically a visual and 
qualitative assessment. One is seeking to better understand the 
variability in the datasets and the potential usefulness thereof. 
Quantitative assessment follows.

First, it is useful to consider the possible dependencies 
among explanatory variables. As demonstrated quantitatively 
in the “Variable Selection” section, the precision of multiple 
linear regression is sensitive to redundancies and strong 
dependencies in explanatory variables. A starting point of 
analysis is to plot each explanatory variable against each other 
explanatory variable and observe the relationships. Figure 2 
displays the relationships among several explanatory vari-
ables for the example dataset. Ideally, candidate explanatory 
variables will not be correlated; instead, plots should show a 
nearly horizontal, smoothed relationship. In figure 2, there are 
several variable pairs that do not show the ideal relationship. 
Of most concern is the strong linear dependence between aver-
age temperature in the drainage basin and average temperature 
at the streamgage. Because of this strong dependence, the 
variables provide highly redundant information. Consequently, 
it is inappropriate to include both variables in the same regres-
sion analysis. In these types of situations, there is no standard 
guidance on which of the variables should be retained. Argu-
ments of physical plausibility or ease of collection may prove 
useful, or it may be necessary to consider each in turn. 

In addition to identifying troublesome dependencies, 
visualizations such as those in figure 2 begin to document the 
distributional behavior of each explanatory variable. Histo-
grams of each explanatory variable, though not shown here, are 
also useful. The goal is to ensure that the explanatory variables 
present a distribution with reasonable spread or variability. Not 

using data that exhibit distinct clustering around specific values 
will increase the physiographic range of the resulting regres-
sion model, thereby improving the specification of regression 
coefficients when a least-squares method is applied.

After controlling for redundancy and dependency in 
explanatory variables, it is useful to visually and qualitatively 
consider the dependence of the response variable on each 
explanatory variable in turn. Multiple linear regression seeks 
to quantify the linear partial dependencies of the response vari-
able on each explanatory variable. Consequently, one seeks 
roughly linear correspondence between the response vari-
able and each candidate explanatory variable. Figure 3 shows 
example scatterplots of the response variable and several 
explanatory variables for the example dataset. Panel A shows a 
strong linear correspondence. Although transformation seems 
necessary, the drainage area may be a strong candidate for an 
explanatory variable in multiple linear regression. Panels B 
and C show less linear correspondence, suggesting that aver-
age March precipitation and the median relief ratio might be 
poor explanatory variables. In the example dataset, the median 
relief ratio had the least correlation with the selected vari-
able of interest. Finally, panel D shows what might be a linear 
dependence. Closer inspection reveals substantial clumping; 
the perceived linearity is a result of visual attenuation pro-
duced by the points in the farthest right-hand part of the plot. 
For this reason, such an explanatory variable may not be a 
strong explanatory variable. Used only for illustrative pur-
poses, panel D shows the same data as panel C, but artificial 
data points have been appended to the right side of the graph.

Using visualization to identify the potential linear 
dependencies of explanatory variables on the response vari-
able can be difficult. Dependency of an exploratory variable 
on one or more of the other exploratory variables may obscure 
the dependency of that exploratory variable on the response 
variable. For this reason, some combinations of explanatory 
variables, if physically justifiable, may prove useful. Because 
drainage area is often selected as an explanatory variable for 
regressions dealing with streamflow statistics, it may be help-
ful to standardize the response variable as a function of the 
upstream drainage area, and then consider the correspondence 
with explanatory variables. After the effects of drainage area 
are removed, other relationships between the response and can-
didate explanatory variables may be more apparent. Figure 4 
shows one such example with the example dataset. Panel A 
shows a weaker relationship when the response variable is not 
standardized. However, when the response variable is divided 
by the confounding explanatory variable not displayed (drain-
age area), a stronger correspondence is indicated (panel B).

If there is not a linear relationship between the response 
variable and an explanatory variable, mathematical trans-
formations of either variable may improve linearity. For 
surface-water statistics of perennial streams, streamflow is 
a commonly used response variable that is often paired with 
upstream drainage area as an explanatory variable; these 
variables are typically log-transformed to achieve linear-
ity. For intermittent or ephemeral streams, this practice is 
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Figure 3. Scatterplots showing relationships between the response variable (10-year annual maximum daily streamflow) 
and selected explanatory variables. A, Scatterplot showing a strong linear relationship between the response variable and 
drainage area. B, Scatterplot showing a weaker linear relationship between the response variable and average March 
precipitation. C, Scatterplot showing the least correlation between the response variable and the median relief ratio. 
D, Scatterplot showing the same data as panel C, but with artificial data points appended to the right side of the graph.
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not suggested because the response variables will often 
equal zero. As an example of such a relationship, panel A 
of figure 5 shows the response variable (10-year annual 
maximum daily streamflow) plotted against an explanatory 
variable (drainage area). Although some correspondence is 
evident, the relationship between them is distinctly nonlinear. 
In panel B, both the explanatory and response variables are 
plotted on a logarithmic scale, which produces a more linear 
relationship. (Taking the logarithm of a variable achieves the 
same transformation as plotting on a logarithmic scale.) In 
addition to linearizing a relationship, a transformation can be 
useful in standardizing the spread of data points around the 
linear relationship. 

Logarithmic transformation is only one of several 
transformation methods. Common tools for identifying 
potential variable transformations are Mosteller’s bulging rule 
(Mosteller and Tukey, 1977, p. 84), Tukey’s ladder of powers 
(Tukey, 1977, p. 89), and Box-Cox transformations (Box and 
Cox, 1964). These tools describe certain power transforma-
tions that can be used to straighten different degrees and 
angles of curvature. In addition to power transformations, 
there are several types of algebraic transformations.

When a response variable is transformed, the regression 
model predicts the transformed response variable rather than 
the untransformed response variable. To obtain an estimate 
of the untransformed response variable, the user will back 
transform the prediction or the regression model itself. This 
process of back transformation can result in substantial bias, 

although methods for handling this bias for common trans-
formations have been documented. Transformations of the 
response variable should only be done when the transformed 
response variable is linearly related to all the explanatory 
variables in the model. Explanatory variables, however, can 
be transformed independently or not at all. In hydrology, 
logarithmic transformation is arguably the most common. 
The properties of logarithms, particularly as they pertain to 
variables whose domain includes zero or negative values, 
are considerations in any decision to perform a logarithmic 
transformation. 

Multiple linear regression describes a regression plane 
or hyperplane (Montgomery and others, 2006), meaning that 
regression analysis quantifies the isolated influence of each 
explanatory variable in turn by holding constant all other 
variables. Consequently, a pairwise comparison of response 
and explanatory variables may fail to identify a strong linear 
dependency that may later prove influential through formal 
regression analysis. Although considering a few standard vari-
able combinations and transformations is useful, it is far from 
exhaustive. For this reason, such exploratory data analysis 
can be viewed as a tool by which to increase familiarity with, 
and insight about, the dataset at hand. This increased familiar-
ity aids in the iterative interpretation of candidate regression 
models. However, although exploratory data analysis can 
determine the adequacy of candidate explanatory variables, it 
cannot determine if a variable can be categorically excluded 
from subsequent regression analysis. 
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Model Estimation
Formal regression analysis is required to quantify the 

relationships between the selected response variable and the 
explanatory variables. The following sections discuss the basic 
principles of regression, the principles of least-squares regres-
sion, and variations of least-squares regression. A glossary of 
symbols can be found in appendix 2.

Principles of Linear Regression

In linear regression, it is assumed that the response vari-
able can be represented as a linear combination of the explana-
tory variables. This assumption is commonly expressed by 
representing the response variable Y and the explanatory 
variables as Xs such that 

 Y X X X M� � � ���� � � �
0 1 1 2 2[, [, [,M , (1)

where
 M is an arbitrary number of explanatory 

variables; and
	 β	 are unobserved linear coefficients of the 

underlying, true model. 
If equation 1 is a valid underlying model, then the regression 
coefficients can be estimated by several different methods. 
Regardless of the calculation method, approximations are 
commonly represented by a hat to the relevant character 
(for example, β0 is estimated as  β̂0). Furthermore, with the 

approximation of linear coefficients, the estimated linear 
model deviates from the true underlying model, resulting in 
some residual error, ε. The reformulation of the linear model, 
after regression estimation, is therefore

 ˆ ˆ ˆ    ˆ
[, [, [,0 1 1 2 2X X X εY MM . (2)

In the application of equation 2, the model residual is 
unknown and the resulting prediction of response variable, Ŷ , 
is given as 

 ˆ ˆ ˆ ˆ ˆ
[, [, [,Y X X X M0 1 1 2 2 M . (3)

A graphical representation of the observed response, the fitted 
model, and model residuals for a bivariate case of the 10-year 
annual maximum streamflow and drainage area are shown in 
figure 6.

An analysis of residuals is the focus of most tools for 
regression analysis. In model development, the residuals are 
defined as the difference between the observed and estimated 
values of the Y variable:

 ε Y Ŷ . (4)

Because streamflow statistics are, themselves, estimates 
of unobserved values (for example, Y is an estimate of the 
unknown true value, Ỹ ), they are subject to some degree of 
error. Unless a statistic is defined as being for the specific time 
period that was used to compute the statistic, it is impossible 
to know the true value of a streamflow statistic without an 

Figure 5. Scatterplots showing the effect of transforming response and explanatory variables. A, Scatterplot of the 
nonlinear relationship between untransformed explanatory and response variables. B, Scatterplot showing the improved 
linear relationship after logarithmic transformation of both variables.
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infinitely long streamflow record. Variability in the streamflow 
record introduces time-sampling error into estimates calcu-
lated using a finite record length. Therefore, because finite 
samples are required for model development, the residual error 
in a regression model is composed of two types of errors: a 
model error, δ , and a sampling error of the streamflow statis-
tic, η. The model error is the difference between the unknown, 
true value and the regression-estimated value:

 δ Y Y� ˆ, (5)

but the sampling error, η, is the difference between the 
observed or computed value and the true value:

 ƞ Y Y�. (6)

Summing equations 5 and 6, in conjunction with equation 4, 
yields

 ε = δ + η. (7)

Further analysis of this residual error is possible after assump-
tions about the method of model fitting have been made.

Least-Squares Regression

Least-squares regression is one of the most widely used 
techniques for estimating the regression model presented in 
equation 2. Other methods can be used (for example, mini-
mizing mean deviation, minimizing the maximum absolute 
deviation), but least-squares regression provides a closed-form 
solution to minimize the sum of the squared residuals, SSε, 
across N observations, as

 SS Y Y
i

N

i i
i

N

i
1

2

1

2ˆ . (8)
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and explanatory variable (drainage area), whose observations are represented in the 
scatterplot, linearly regressed against each other to produce the dashed line in this bivariate 
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When working with only one explanatory variable, it may 
be easy to draw a line by eye to fit the data. However, two 
analysts may draw lines with different slopes and intercepts. 
The least-squares regression method ensures consistency by 
defining and estimating an optimal fit. Note that the residual 
measures only the differences in the response variable and not 
in the explanatory variables.

Consider the bivariate linear modeling, having one 
response and one explanatory variable, 

 Y X� �� �
0 1 1[, , (9)

with the least-squares estimate of 

 ˆ ˆ ˆ
[,Y X0 1 1 . (10)

The least-squares estimators of β0 and β1, can be obtained 
by substituting equation 10 into equation 8 and taking the 
partial derivatives with respect to  β̂0 and  β̂1. Setting the 
resulting two equations to zero, as if determining the location 
of extrema, and solving the system of equations gives the 
following estimators:

 ˆ
ˆ

,
0

1 1 1 1i

N
i i

N
iY X

N
, (11)

and

 ˆ
,

,

1

1 1
1 1 1

1

i

N
i

i

N
i

i
i

N
i

i

N
i

X
X
N

Y
Y

N

X ,,
,

1
1 1

2

i

N
iX

N

. (12)

The derivation of these equations can be carried further to a 
proof that the least-squares regression model presents a Best 
Linear Unbiased Estimator (B.L.U.E.). Beyond the fact that an 
unbiased estimate is produced, the discussion of B.L.U.E. is 
beyond the scope of this report.

The development of equations 11 and 12 rely on the 
assumptions that the linear model is the correct underlying 
model and that the mean of the residuals is zero. However, to 
draw additional inference from the development of the regres-
sion model and estimated coefficients, additional assump-
tions are needed. Commonly, the residuals are assumed to be 
independent and identically distributed variates that follow a 
normal distribution with a constant variance; the latter condi-
tion is called homoscedasticity. The result is that any esti-
mate derived from the least-squares regression model can be 
considered to be a conditional mean of the response variable, 
given the fixed values of the explanatory variable. Further, 
the conditional mean is at the center of a conditionally normal 
distribution, as depicted in figure 7. These assumptions aid in 
model interpretation and evaluation.

Least-squares regression can be extended to multiple 
linear regression, which can evaluate multiple explanatory 
variables without loss of inferential fidelity. For multiple linear 
regression, it is convenient to consider matrix notation. By 
considering equation 2 to be representative of each observa-
tion of the response variable across a range of observations, 
a system of N equations can be developed. This system can 
be summarized by (1) Y, an N × 1 matrix of the observations 
of the response variable; (2) X, an N × (M + 1) matrix of the 
observations of the explanatory variables with the first column 
consisting of unit values; (3)  β̂, an (M + 1) × 1 matrix of the 
linear coefficients of the response variable; and (4) ε, an N × 1 
of the residuals, such that 

 Y Xꞵ εˆ . (13)

In this formulation, the least-squares regression coefficients 
can be estimated as

  ˆ β X X X YT TΛ Λ1 1 1 , (14)

where
 Ʌ is a square N × N matrix of weights on the 

observations of Y. 
The differences in the weighting matrix lead to the different 
modes of regression: OLS, WLS, and GLS.

For hydrologic applications, if the response variable, a 
streamflow statistic, and the residual error therein contain both 
modeling and sampling errors, the variance of the residual 
errors, σ2

ε , is a summation of sampling variability and model-
ing variability:

 � � �� � �
2 2 2� � , (15)

where
 σ2

η	 is the sampling error variance that reflects that 
part of the residual error variance that can 
be attributed to imprecise estimates of the 
observed response variable, primarily due 
to finite record length; and 

 σ2
δ is the modeling error variance that reflects 

that part of the residual error variance that 
results from an imperfect model that does 
not adequately explain all the variability 
seen in the observations. 

In OLS regression, the sampling error variance cannot 
be separated from the modeling error variance. The model-
ing error reflects the variability in the difference between the 
regression estimate and the unknown, true value. Specific 
applications of WLS and GLS regression developed by Tasker 
(1980) and Tasker and Stedinger (1989) allow the sampling 
and modeling error variances to be estimated. Another advan-
tage of the applications is that the availability of alternate 
weighting matrices account for different record lengths and 
sampling uncertainty.
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Ordinary Least-Squares Regression
OLS regression, the most traditional form of least-squares 

regression, assumes that the uncertainty associated with each 
of the observations is approximately equal. Accordingly, in 
the estimation of regression coefficients, all observations are 
weighted equally. In this case, the weighing matrix for OLS 
regression, ɅOLS, is the identity matrix:

 ΛOLS i j
for i j
for i j, ,

1

0
. (16)

The OLS approach is suitable for estimating regression 
parameters when there is little variation in the precision of 
observed response variables and the residuals are independent 
of each other.

Weighted Least-Squares Regression
WLS regression is a modification of OLS regression 

that accounts for heterogeneous uncertainties in the observed 
response variables. The uncertainty in streamflow statistics, 
which are commonly used as response variables, is often due 
to the length of the streamflow record used to compute the 
statistics. Record augmentation or extension also can intro-
duce uncertainties into streamflow statistics. WLS regression 
accounts for these uncertainties by assigning weights to each 
variable based on the perceived uncertainty or variance in 
that observation. A variable with a small variance would be 
assigned a greater weight because there is less uncertainty in 
the estimated streamflow statistic. Conversely, a variable with 
a higher variance would be assigned a low weight because 
there is more uncertainty with respect to the true value of 
that streamflow statistic. Therefore, for WLS regression, the 
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Figure 7. Graph showing the relationship between the response variable (10-year 
annual maximum daily streamflow) and explanatory variable (drainage area). The linear 
regression, as represented by the heavy black line, represents the mean of a normal 
distribution conditional on the observed explanatory variables. The bell-shaped normal 
curves represent the distribution of the observations about each black dot. Such a 
distribution can be developed for any point along the regression.
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elements of the weighting matrix, Ʌ, are a product of the type 
and source of the response variable.

There are several different approaches that can be used 
to estimate the elements of the weighting matrix. In all of the 
methods, the main diagonal of the matrix will have nonzero 
values, but the off-diagonal elements are all zero. The values 
in the main diagonal will sum to the number of observations 
used in the analysis. Otherwise, use of the weighting matrix 
will result in incorrect estimates of error. The optimal method 
for assigning weights is to divide the inverse of the variance 
of the estimates at each station by the mean of the inverses 
of the variances for all stations. Dividing by the mean, which 
is called centering, ensures that the total of the individual 
weights is equal to the number of observations. However, it 
is not always possible to quantify the exact variance. In these 
cases, there are several other approaches that can be used, such 
as defining weights based on the length of the record used 
to estimate the streamflow statistics, the variance of the time 
series used to calculate the streamflow characteristic, or some 
combination of these measures. These alternative approaches 
can only be used when the variances of the streamflow 
estimates are not available. When using WLS regression, the 
method used to assign weights for the different variables will 
be documented in the resulting report.

Tasker (1980) developed a method for estimating the val-
ues in the weighting matrix specifically for use with frequency 
statistics calculated using a log-Pearson Type III analysis (for 
example, as advised by Bulletin 17C (England and others, 
2018). When the response variable is such a frequency statis-
tic, the weighting matrix can be calculated as

 
ˆ

, ,
ΛWLS i j i

c
m

for i j

for i j

2 1

0

.
 

(17)

The modeling error variance as mentioned in equation 16, ��
2 , 

is estimated as 

 � �� �
2 2

1

1

0
1 1

� �
�

�
�

�

�
�

�

�
�

�

�
�

�
�max c

N mOLS
i

N

i

,
|

, (18)

where

 �� |OLS
2

 is the mean squared error (MSE) of estimates 
derived from an OLS regression on the 
same explanatory variables,

 mi is the record length used to compute the ith 
observation of the response variable, and

 N is the total number of observations. 
The coefficient, c1, is given as

 c max K g Kgw w1

2

2
2

0 1
2
1 0 75� � �� � ��

�
�

�

�
�

�

�
�

�

�
�, .� , (19)

where
 σ  is the arithmetic average of the standard 

deviations of the annual-time series of the 
streamflow used to compute the streamflow 
statistics used as the explanatory variable, 

 K  is the arithmetic average deviate from the 
log-Pearson Type III distribution used 
to estimate the response variable at each 
streamgage considered in the analysis, and

 g̅w is the arithmetic average skewness from the 
log-Pearson Type III distribution used 
to estimate the response variable at each 
streamgage considered in the analysis. 

The log-Pearson Type III deviate is determined as a function 
of the probability of exceedance and skewness (U.S. Inter-
agency Advisory Committee on Water Data, 1982). 

The skewness values used in this development can 
be either the at-site skewness or the weighted skewness, 
though the weighted values (gw) are shown in equation 19. 
As described in Bulletin 17C (England and others, 2018), the 
weighted skewness for the ith streamgage is given as

 g g gw i i i i Reg i, ,
� � �� �� �1 , (20)

where
 gReg,i is the regional skewness estimate applicable 

to the ith gage. 
The weight, ωi , is a function of the estimated MSE of the 
skewness value at the gage, MSEgi and the estimated MSE of 
the regional skewness values, MSEgreg, such that

 �i
g

g g

MSE

MSE MSE
reg

i reg

�
�

. (21)

A variety of methods are available to determine greg values 
(Bulletin 17C; England and others, 2018). As given by Griffis 
and others (2004) and Griffis and Stedinger (2009), the MSE 
of the skewness value at the gage, MSEgi, is estimated as

 MSE
m

c c g c gg
i

i ii
� �
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4 , (22)

where

c
m mi i

2 2 3

17 75 50 06
� � �

. . ,

 c
m m mi i i

3 0 3 0 6 0 9

3 93 30 97 37 1
� � �
. . .
. . . , and

 c
m m mi i i

4 0 56 1 12 1 68

6 16 36 83 66 9
� � �
. . .
. . .

. (23)

An important advantage of Tasker’s (1980) approach 
to WLS regression is that it provides unique estimates of the 
modeling error variance and the sampling error variance. An 
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alternative approach to calculating the modeling error variance, ��
2 , is presented by Ste-

dinger and Tasker (1986). Stedinger and Tasker’s (1986) estimator has been demonstrated to 
be more precise than equation 17, but neither the estimator nor equation 17 includes a mix of 
approaches to compute streamflow characteristics at partial-record streamgages (Funkhouser 
and others, 2008). 

Generalized Least-Squares Regression
There is often a high degree of similarity among streamflow statistics from neighboring 

streamgages. Therefore, streamflow statistics from different streamgages, and the response 
variables selected from them, cannot be assumed to be independent of each other. For stream-
flow statistics calculated from a log-Pearson Type III frequency analysis, Stedinger and Tasker 
(1985) introduce a GLS approach to parameter estimation that builds on WLS regression by 
accounting for both correlated streamflows and time-sampling errors. This GLS approach incor-
porates estimates of the covariances among residual errors at each streamgage into the elements 
of Ʌ.

Tasker and Stedinger (1989) estimate the weighting matrix for GLS, Ʌ̂GLS, as

 

ˆ
, ,
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44
for i j

, (24)

where
 subscripts are indices of streamgages in the region of interest,
 ��

2  is the modeling error variance,
 σi is the standard deviation of the streamflow time series used to estimate the 

streamflow statistic at the subscripted site,
 gw,i is the weighted skewness at the subscripted site,
 K is the log-Pearson Type III deviate of the subscripted site,
 mij is the concurrent record length for the subscripted streamgages, and
 ρ̂

ij is the estimated cross correlation among the time series of streamflow used to 
calculate the streamflow statistic. 

The main diagonal elements of Ʌ̂GLS include the model error, δ, and all elements include the 
effect of the time-sampling error, η, at the subscripted site.

For the system described in equation 13 to be solvable, it is necessary to estimate cross-
site correlations. The sampling uncertainty in observed correlations may produce a singular, or 
noninvertible weighting matrix. Tasker and Stedinger (1989) suggest approximating the cross 
correlations as

 ˆij

d
d
ij

ij
1

12 , (25)

where
 dij is the distance between the subscripted sites, and 
	 θ1 and θ2 are dimensionless parameters, which are estimated from the observed data.

As described by Tasker and Stedinger (1989), the modeling error variances, ��
2  in Ʌ̂GLS, 

and the estimated coefficients are simultaneously determined by iteratively searching for a non-
negative solution to

 Y Xꞵ Y Xꞵˆ ˆT

GLS N MΛ 1 1 , (26)
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where
 β̂ is determined from equation 14,
 N is the number of observations, and 
 M is the number of explanatory variables used in the regression. 

Equation 24 is an improvement compared to WLS regression because it accounts for cor-
related streamflows and time-sampling errors. However, it does not account for the uncertainty 
associated with estimating values of skewness. Depending on the actual magnitude of errors in 
estimation of skewness, this additional error may unduly influence the estimation of regression 
parameters. A method presented by Griffis and Stedinger (2007) accounts for this uncertainty 
in the skewness. In this instance, the skewness values must be weighted skewness values rather 
than at-site skewness values. The revised weighting matrix is
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Most of the variables in equation 27 are defined for equation 24 and the weights, ωi, are defined 
for equation 20.

The partial derivative of the log-Pearson Type III deviates is calculated from Kite’s (1975, 
1976) approximations as 
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where
 Zp  is the standard normal deviate corresponding to probability p.

Griffis and Stedinger (2009) approximate the variance of the skewness, σ gi
2 , as 
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where

 c
m m mi i i

5 0 3 0 6 0 9

3 92 31 1 34 86
� � �
. . .
. . .

, and 

 c
m m mi i i

6 0 56 1 18 1 77
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. (30)
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Conclusions

Although OLS regression is the simplest approach to 
multiple linear regression, WLS or GLS regression is gener-
ally preferred when applicable. WLS and GLS regression 
methods better account for differences in the accuracy of 
streamflow statistics at different streamgages. GLS regression 
is preferred over WLS regression if the correlation in stream-
flow statistics among streamgages can be approximated by 
using a relationship between distance and degree of correla-
tion. If there is no clear relationship between correlation and 
distance, the covariance matrix estimated using Tasker and 
Stedinger’s (1989) method will not be accurate. In this case, 
WLS regression would be a better choice. However, note 
that the methods presented by Tasker (1980) and Tasker and 
Stedinger (1989) are specific to streamflow frequency statis-
tics and cannot be used for other streamflow statistics or other 
response variables without modification.

Model Evaluation
The development of a regression model is a highly iterative 

process. Even after conducting an exploratory data analysis, it 
is necessary to consider several groups of explanatory variables 
to identify the model structure that provides the best predic-
tive capacity while satisfying the assumptions of least-squares 
regression. As discussed in the following sections, model evalu-
ation can be divided into (1) structural assessments to ensure the 
validity of assumptions and the representativeness of the model 
structure and (2) performance assessments to determine the 
goodness-of-fit and predictive capacity of the candidate models.

Structural Diagnostics

Before considering the predictive performance of a regres-
sion model, it is important to check that the fitted model vali-
dates the assumptions used to develop the model. Namely, one 
is most interested in the normality of residuals, homoscedastic-
ity of residuals, and independence of residuals with respect to 
each other and all possible variables. If these assumptions are 
validated, inferences can be made from the fitted model and 
its coefficients. The most straightforward approach to assess-
ment is to begin by examining the residuals. From there, it is 
possible to assess the model structure by considering which 
explanatory variables are included and their added value.

Residuals
The residuals of a fitted model provide important diagnos-

tics of model adequacy and should be examined for normal-
ity, homoscedasticity, and independence. The validity of the 
fitted model should be questioned if the residuals are found to 
be nonnormal, heteroscedastic, or dependent. Without well-
behaved residuals that are normally distributed, homoscedastic, 

and independent, the model assumptions are invalid and infer-
ences cannot be drawn without numerous caveats.

A scatterplot showing the relationships among the residu-
als and the observations or predictions of the response variable 
can be used to assess the residuals. Figure 8 shows residual 
errors plotted as a function of the response variable, which is 
the predicted 10-year annual maximum daily streamflow. As 
described by Helsel and Hirsch (2002, p. 245), the residuals 
should be distributed around zero with a constant variability. 
Although the condition of unbiasedness (that is, the mean 
being zero), is important, figure 8 is more useful for assessing 
the constancy of variability in the residuals. Ideally, the residu-
als will exhibit homoscedasticity, which means that the vari-
ability or spread of the residuals around the zero-residual line 
is not dependent on the observed or predicted response vari-
able. Panel A of figure 8 illustrates homoscedastic residuals, 
but panel B illustrates the opposite, heteroscedastic residuals.

In addition to exhibiting homoscedasticity, the residuals 
should be approximately normally distributed. As shown in 
figure 9 for the residuals of the example regression, a normal 
probability plot is a graphical method for evaluating the valid-
ity of this assumption. A normal probability plot is built by 
plotting the ordered residuals against the normal quantile of 
the ordered residuals, assuming the sample mean and vari-
ance of the errors are reasonable approximations of their true 
values. This process requires the assumption of a probability 
plotting position. A common approach to assigning a plotting 
position is to use the Weibull plotting position,

 
p r

Nr � �1 , (31)

where
 r is the rank of the residual errors being 

considered, in increasing order;
 N is the total number of observations; and
 pr  is the plotting position or nonexceedance 

probability of the specified residual error. 
Helsel and Hirsch (2002) discuss several alternative plotting 
positions. The normal quantile of this residual error is then 
given as 

 ˆr pZ r
, (32)

where
 �̂ r is the theoretical rth quantile,
 ε  is the mean of the residuals,
	 σε is the standard deviation of the residuals, and
 Zpr is the standard normal quantile of the residual 

error given the plotting position pr .
Plotting ε̂r against the observed residuals, εr, gives a normal 
probability plot. Deviations from a line with a slope of one 
and an intercept of zero (thereby passing through the origin) 
demonstrate deviations from normality. Assuring the homosce-
dasticity and normality of residuals is an attempt to validate 
the assumption that the marginal distribution of residuals is 
not a function of the predicted response variables. 
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Leverage and Influence
After assessing the distribution of residuals, it is useful 

to consider the influence that the specific observations of the 
explanatory and response variables contained in the data-
set may have on regression. This process is conducted by 
considering two metrics: leverage and influence. Leverage 
measures the distance of each independent observation from 
the other observations. Influence measures the sensitivity of 
regression parameters to any particular observation. Obser-
vations with high leverage and substantial influence require 
further examination.

Leverage measures how far away the value of one 
observation of the set of explanatory variables is from the 
centroid of all other observations. Leverage gives an indica-
tion of whether the values of the explanatory variables for any 
particular observation are unusual when compared to other 
observations. In matrix notation, the leverage of each observa-
tion is given on the main diagonal of

 h X X X XT TΛ Λ1 1 1 . (33)

Leverage values are considered large if

 h h
C
N

hi i limit
h

i

N

i i, ,
� �

�
�
1

, (34)

where
 Ch is a constant. 

Although the leverage metric identifies unusual observa-
tions, such unusual observations may or may not have any 
significant influence on the estimated regression coefficients. 
An influence metric, such as Cook’s D (Cook, 1977), indicates 
whether an observation has a large influence on the estimated 
regression parameter values. Cook’s D is calculated as
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, (35)

where
 M is the number of explanatory variables 

considered,
 Λi,i  is the ith main diagonal of the Λ weighting 

matrix, and
 Li,i	 is the ith main diagonal of X X X XT TΛ 1 1

 
(Tasker and Stedinger, 1989). 

Commonly (for example, Montgomery and others, 2006), 
an observation can be considered to have large influence if 

 D D
Ni limit� �
4

. (36)

An observation that follows the relationship indicated by 
other observations can have high leverage but low influence. 
Although neither model would be acceptable for interpola-
tion beyond the main cluster of data points, figure 10 shows 
examples of an observation with high leverage but without 
high influence (panel A) and high leverage with high influence 
(panel B). Figure 10 is based on this report’s example regres-
sion, with an artificial data point added for illustration.
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Figure 8. Scatterplots showing residual errors 
plotted as a function of the response variable 
(predicted 10-year annual maximum daily streamflow). 
A, Scatterplot showing a homoscedastic relationship 
between the residuals and the response variable. 
Homoscedasticity is the ideal situation because 
the variability or spread of the residuals around the 
zero-residual line is not dependent on the observed or 
predicted response variable. B, Scatterplot showing 
a heteroscedastic relationship between the residuals 
and the response variable. The variability of the 
residuals in panel B noticeably decreases with an 
increasing magnitude in the response variable. 
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All high leverage and high influence observations should 
be checked to ensure that the values of both the response and 
explanatory variables were correctly calculated. If an error 
is found and cannot be corrected, the observation should be 
removed from the analysis. However, removing the observa-
tion may lessen the applicable range of the regression models. 
In general, observations should not be removed from an analy-
sis simply because they exhibit high leverage or high influ-
ence. Every effort should be made to identify the differences 
between the high leverage or high influence observations and 
the other observations. This understanding may inform the 
limitations of the regression model. If the applicable range is 
not constrained, the error metrics calculated using the smaller 
set of observations will not reflect the true uncertainty in pre-
dictions from the regression model.

There are several ways to lessen the influence of a high 
influence observation without obvious errors. First, efforts 
should be made to find other sites with similar explana-
tory variables. Further improvements may be obtained by 

separating observations into different groups (for example, 
groundwater-dominated sites, very small basins). By creating a 
new class of sites, the observation may no longer be an outlier 
or may have less influence. Using a model with other explana-
tory variables may also prove useful. The most extreme action 
is the removal of the observation with high influence, thereby 
limiting the applicability of the regression.

Variable Selection
The most important elements of a model’s structure are 

the explanatory variables included in the model. However, 
determining which variables should be included in the model 
is one of the greatest challenges of model development. In 
general, a variable should be included if it provides unique, 
linear information; the associated coefficient is significantly 
different from zero; and the sign and magnitude of the 
associated coefficient are reasonable given a physical interpre-
tation of the result. For each explanatory variable, a minimum 

Figure 9. Example of a normal probability plot for checking the normality of residuals. 
The plot shows the relationship among observed quantiles and theoretical quantiles. If 
normally distributed, the points should plot near the straight line with a slope of 1 and an 
intercept of 0 thereby passing through the origin. This example suggests that the data 
may not be distributed normally.
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number of observations should be used in the final regression. 
A common minimum number is 10 observations for each vari-
able, however, this requirement has not been codified.

Each explanatory variable should contain unique infor-
mation that is linearly related to the response variable. During 
exploratory data analysis, the linearity among explanatory 
variables and the linearity with the response variable were 
considered. After a regression has been fitted, it is possible to 
provide a more robust assessment. The uniqueness of informa-
tion can be assessed by considering the phenomenon of multi-
collinearity. Partial-regression plots are useful for determining 
the linearity of the relationship with each explanatory variable.

Partial-regression plots for each explanatory variable 
document the linearity of the relationships between the explan-
atory variable and the response variable. Partial-regression 
plots show the partial residual against each adjusted explana-
tory variable. Partial residuals are unique to the explanatory 
variable being assessed. They are calculated as a residual error 
from a regression built with all explanatory variables except 
the one being assessed. The adjusted explanatory variable is 
the residual error between the observed explanatory variable 
and the predicted explanatory variable. The predicted explana-
tory variable is treated as a response variable and is predicted 

from a regression built on all other explanatory variables. The 
partial-residual plots in figure 11 show an assessment of the 
partial residual from regressing the logarithm of the 10-year 
annual maximum streamflow against the logarithm of drainage 
area and the untransformed value of average annual precipi-
tation. Partial-residual plots should appear linear. Curvature 
in a partial-residual plot is the best indicator that variable 
transformation is needed. The partial-residual plots should also 
demonstrate homoscedasticity and normality when assessed 
against the response variable.

In addition to a linear relationship, each explanatory 
variable should provide unique information. Multicollinearity 
is a condition in which two explanatory variables have strong 
linear dependencies and are in essence moving with each other 
(Myers, 1990). Such a condition inflates the variance of the 
regression coefficients, affecting the precision of the resultant 
estimates. Consequently, variables that are highly correlated 
should not be included in the same regression model because 
the redundant information contained in highly correlated 
explanatory variables affects the fit of the regression coef-
ficients. For example, main-channel length and drainage area 
are likely to be highly correlated because as the drainage 
area gets larger, the main-channel length tends to get longer. 
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Figure 10. Scatterplots showing examples of leverage with and without high influence. An artificial data point (in 
red) has been added to illustrate high leverage. A, Scatterplot showing high leverage without high influence. The 
artificial data point produces a linear regression (in red) that is similar to the dotted, black line of regression based 
on all data excluding the artificial point. B, Scatterplot showing high leverage with high influence. The artificial 
point exhibits the same degree of leverage because the associated explanatory value has not changed, but the 
influence is substantial, shifting the red regression line downward from the regression line with the value omitted.
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Having both variables in the same equation is not adding new 
information, and in fact, can cause the equation to produce 
erroneous results. Indications of multicollinearity include 
coefficients of explanatory variables that change noticeably 
when adding or removing an explanatory variable, or signs of 
coefficients that are not what would be expected.

A quantitative check for multicollinearity is the variance 
inflation factor. The variance inflation factor, VIF, is calculated 
as

 VIF
Rk
k

�
�
1

1
2

, (37)

where
 Rk

2  is the coefficient of determination from a 
regression designed to predict the kth 
explanatory variable as a function of all 
other explanatory variables.

Equation 37 is the same regression used in the development of 
adjusted explanatory variable for partial-residual analysis. A 
variance inflation factor greater than 5 or 10 (corresponding to 
Rk

2  greater than 0.8 to 0.9) indicates highly correlated pre-
dictors that warrant further investigation. This rule is a com-
monly used decision rule, but there may be cases where highly 
correlated variables are worth retaining. If highly correlated 
variables are retained, the variance of the fitted coefficients will 
be magnified by the variance inflation factor, which increases 
the uncertainty about the correct value of a coefficient. This 
uncertainty carries through from regression fitting to prediction 
and characterization of the confidence in estimates.

Some degree of multicollinearity can be mitigated 
through sample design, such as ensuring that all observations 

capture a wide range of the possible combinations of explana-
tory variables. Gaps in the representativeness of data can 
result in multicollinearity. For example, consider a regression 
of streamflow with two explanatory variables: drainage area 
and percentage of basin urbanized. If the selected monitoring 
network included large drainage areas with low urbanization 
and small drainage areas with high urbanization, and these 
observations were not representative of the true underly-
ing distribution, a possibly misleading negative correlation 
between the two explanatory variables would result. When a 
correlation exists between two variables but does not result 
from any causal relationship between them, it may be possible 
to collect observations that deviate from this sampling bias, for 
example, large drainage areas with high degrees of urbaniza-
tion. However, this approach is not always possible due to data 
unavailability or nonexistence and the strategy will not work 
when two variables are correlated. 

Another possible remedy for multicollinearity is to elimi-
nate one or more of the explanatory variables. As mentioned 
in the “Exploratory Data Analysis” section, trying each of the 
correlated explanatory variables in turn, while keeping other 
explanatory variables constant, can help determine which of 
the correlated explanatory variables is most useful for the final 
regression model. Kroll and Song (2013) note that multicol-
linearity is most effective when trying to draw inferences from 
regression coefficients. However, if interest is only in predic-
tion, then multicollinearity is not a major concern. Kroll and 
Song (2013) provide a deeper discussion of multicollinearity 
and possible approaches to correction.

If an explanatory variable is to be included in the 
regression model, it is appropriate to determine if the fitted 

A B

Adjusted drainage area, in square miles

Pa
rti

al
 re

si
du

al

Adjusted average annual precipitation, in inches

Pa
rti

al
 re

si
du

al

−5 −4 −3 −2 −1 0 1 2 3 4 −50 −25 0 25 50 75 100
−4−6

−5

−4

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

Figure 11. Partial-residual plots for the example regression with two explanatory variables. The regression is of 
the logarithmically transformed 10-year annual maximum streamflow against A, the logarithmically -transformed 
drainage area and B, the untransformed basin precipitation. The curvature in panel B suggests that variable 
transformation may be appropriate for precipitation.
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coefficients are significant. In addition to estimating the values 
of the model coefficients, least-squares regression provides 
methods for estimating the variance of these estimates as 

 ˆ

,

k

SS
N M

forOLS

else

T

T

k k

2
1 1

1 1
1
X X

X X

Λ

Λ

. (38)

The need to append the leading term, which is equivalent 
to the MSE, for OLS regression arises because the weight-
ing matrix Ʌ contains the MSE for the specialized forms of 
regression discussed in this report except for OLS regression. 
Based on the assumptions of least-squares regression, each 
coefficient approximately follows a Student’s t-distribution 
with N M� �� �1  degrees of freedom. Accordingly, the 
t-value for each coefficient can be estimated as 

 t
k

k

k
ˆ
ˆ

. (39)

However, these variances and the distributive representation 
are only valid if all the assumptions of least-squares regression 
are valid. Any deviation restricts the use of these approxima-
tions and the inference derived thereof.

Because the coefficients follow a Student’s t-distribution, 
it is possible to develop confidence intervals on the coefficients 
or apply a hypothesis test to determine the significance of each 
coefficient. Such tests, producing p-values, are widely used 
in regression analysis. However, caution should be used in 
interpreting significance. The American Statistical Association 
recently reminded practitioners that p-values are closely linked 
with development of a null hypothesis and are not a measure 
of the accuracy of any alternative hypothesis (Wasserstein and 
Lazar, 2016). Science and regression should not be based only 
on the significance of p-values (Wasserstein and Lazar, 2016). 

The idea of a significance test is to evaluate the null 
hypothesis that a coefficient is zero against an alternative 
hypothesis that the coefficient is not zero. The tests on each 
variable are treated as independent. The p-value of a given 
coefficient is 

 p Prob t t
k k� �� �� �2 . (40)

The p-value, p kβ , gives the probability of a similarly extreme 
value of �̂k based on the assumption that the null hypothesis is 
true. A small p kβ  suggests that similarly extreme observations 
are unlikely under the null hypothesis and is commonly con-
sidered evidence that the null hypothesis is invalid. This test is 
often simplified by specifying a level of significance, com-
monly 0.05. A p-value of less than this level of significance 
is evidence that the null hypothesis should be rejected and 
the coefficient is considered significant. If there is evidence 
to reject the null hypothesis, it is wise to retain the explana-
tory variable in question. Finally, each significance test is 

conducted independently. Therefore, a standard F-test should 
be used to test for dependence or joint significance.

Variables that are determined to represent unique, linear 
information and have a regression parameter significantly 
different from zero are used for the regression. For these 
variables, it is important to consider the estimated coefficients 
with respect to expectations based on the physical system. As 
with exploratory data analysis, the users’ intuition and system 
understanding are pivotal. The coefficients and fitted model 
should yield reasonable predictions when reasonable values of 
the explanatory variables are used. It is important to consider 
the estimated intercept carefully and ask if the quantified 
relationships behave as would be expected given the physical 
constraints of the system. In such an analysis, more attention 
is paid to the slopes than the intercept.

Each slope coefficient should reasonably represent the 
isolated effect of the associated explanatory variable. Both 
the sign and magnitude of the coefficient should make sense. 
A positive coefficient indicates that the larger the value of 
the explanatory variable, the larger the response variable. For 
example, with a streamflow statistic, a positive coefficient 
makes sense for explanatory variables such as drainage area 
or precipitation. Similarly, although special attention should 
be paid to units, the magnitude of the coefficient should be 
checked for reasonableness. Signs or coefficient magnitudes 
determined by the model that are not reasonable indicate that 
there is a problem with the model or inputs.

Before leaving the subject of variable selection, it is 
important to address the field of automated variable selection. 
To date, nothing can replace the intuitive understanding of the 
physical system supplied by a knowledgeable user. How-
ever, there are several tools for automated variable selection; 
such tools are often included in statistical software packages. 
These methods can allow quick screening of variables but the 
applicability of the suggested variables should be carefully 
reviewed. Exploratory data analysis should give the analyst a 
feel for what variables are likely to be significant, even before 
automated procedures are used.

Automated algorithms for variable selection can be clas-
sified into four groups: forward selection, backward elimina-
tion, stepwise selection, and all-possible-subsets selection 
(Helsel and Hirsch, 2002). Forward selection schemes first 
select the most significant explanatory variable from the 
candidate variables supplied by the user. Then, one by one, the 
scheme adds the next most significant variable until a criterion 
is reached. With backward elimination, the program starts with 
all explanatory variables and eliminates them one at a time, 
based on which of the remaining variables is least significant. 
Stepwise selection is similar to forward selection, but, at each 
iteration, all variables are also checked to see if one should be 
removed. The final method, all-possible-subsets selection, is 
computationally intensive because every possible combination 
of the candidate explanatory variables is tested. The software 
for this method typically allows the user to select a maximum 
number of explanatory variables to use. The all-possible-
subsets selection method is the suggested method because it 
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allows for extensive exploration without omitting possible 
combinations. With any of these methods, inclusion of highly 
correlated explanatory variables should be avoided. If it is 
desired to test highly correlated variables, only one of them 
should be included in a single model-selection run at a time. In 
addition to variable selection techniques, there are procedures 
that can evaluate models on other metrics, such as the Mal-
lows Cp. Whichever approach is used, the model identified 
should undergo rigorous review of model adequacy following 
the procedures described in this report.

Performance Diagnostics

After validating underlying model assumptions and 
evaluating the structure of the candidate model, it is appropri-
ate to quantify the performance and predictive capacity of the 
regression model. There are a wide array of tools to assess 
model performance and some of the most common tools are 
discussed in this section. These include the coefficient of 
determination, the MSE, confidence intervals, and prediction 
intervals. Although other metrics may be useful for specific 
applications, the methods discussed in this report are consid-
ered essential evaluations of model performance.

Coefficient of Determination and Mean Squared 
Error

The coefficient of determination, commonly referred to as 
R2, is probably the most common metric of regression perfor-
mance. The coefficient of determination measures the propor-
tion of the variation in the response variable that is explained 
by the linear combination of the explanatory variables repre-
sented in the regression model. Montgomery and others (2006) 
and numerous other sources provide the basic calculation as

 R
SS
SSA

2
1� � � , (41)

where
 SSε is the residual sum of squares, as given in 

equation 8; and 
 SSA is the total sum of squares, given as

 SS Y YA
i

N

i� �� �
�
�
1

2

, (42)

where
 Y  is the mean of the observed response variable. 
The total sum of squares represents the total variability in the 
response variable, but the residual sum of squares represents 
the variability in the response variable that remains after the 
regression is applied. The coefficient of determination ranges 
from 0 to 1, with higher values indicating that the regression 
explains more of the variability in the response variable.

Adding more explanatory variables will almost always 
reduce the residual sum of squares. Therefore, adding addi-
tional variables, whether appropriate or not, will almost 

always improve the coefficient of determination. This 
improvement is typically artificial. To address this phenom-
enon when comparing candidate regression models with 
different numbers of explanatory variables, the coefficient of 
determination can be adjusted for the number of explanatory 
variables such that

 R
SS N M
SS Nadj

A

2
1

1

1
� �

� �� �
�� �

� /

/
. (43)

Consequently, adding explanatory variables to a regression 
that do not reduce the residual sum of squares will decrease 
Radj

2 , decreasing the value of increases in model performance.
For WLS and GLS regressions, Griffis and Stedinger 

(2007) suggest a performance metric based on the modeling 
error variance. Because this metric relies on the modeling 
error variance, it cannot be used for OLS regressions because 
the modeling error variance is not separated from sampling 
error. Regardless, this pseudo coefficient of determination, 
Rpseudo

2 , is given as

 Rpseudo
M2

2

0

2
1� �

�
�
�

�

|

|

, (44)

where
 �� |M

2  is the modeling error variance from a WLS 
or GLS regression with M explanatory 
variables, and

 �� |0
2  is the modeling error variance from a WLS 

or GLS regression with no explanatory 
variables.

Rpseudo
2 is based on the variability in the response variable 

explained by the regression after the effect of the time-sam-
pling error is removed.

In addition to the coefficient of determination, the MSE 
is a common performance metric of regression models. In a 
manner, the MSE is the variance of the residuals, as discussed 
with respect to equation 15. The residuals are the deviations of 
observations from the regression line; therefore, the variability 
describes the spread of the observations around the regres-
sion line. A smaller spread, as represented by a smaller MSE, 
indicates a better model fit. The MSE is calculated by dividing 
the residual sum of squares by the degrees of freedom in the 
model such that

 MSE
SS

N M
�

� �
�

1
. (45)

As with all variances, the MSE takes on squared units of the 
response variable. It is therefore often convenient to take the 
square root of the MSE, typically called the root MSE or stan-
dard error. The root MSE is in the same units as the response 
variable and represents the standard deviation of the residuals. 
In cases where the response variable is a logarithmic transform 
using the common logarithm, the root MSE can be expressed 
as a percentage as

 MSE e ln MSE
% � �� �� �
100 1

10
2

. (46)
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Aitchison and Brown (1957) provide the appropriate conver-
sion for other logarithmic transformations.

The variance of the residuals, that is, the MSE, can be 
divided into the sampling error variance and the modeling 
error variance. Although it is not always possible to make this 
delineation in practice, the methods presented in this report for 
WLS and GLS regression of frequency statistics allow for this 
separation. Because WLS and GLS regression weight obser-
vations uniquely and MSE regression does not, it is strongly 
advisable to consider the separate sampling and modeling 
error variances when possible. Although the sampling error 
cannot be controlled by regression, consideration of both sam-
pling and modeling error allows an analyst to determine the 
isolated modeling error variance.

Confidence Intervals
A confidence interval is a range that purports to contain the 

true, conditional estimate with some degree of confidence. The 
variability is the result of uncertainty in the regression param-
eters. The regression line represents a conditional mean of the 
response variable, given the observed explanatory variables. 
Furthermore, as shown in figure 7, the conditional mean is the 
center of a conditionally normal distribution of the response 
variables for the given observations of the explanatory vari-
ables. Given the assumptions of least-squares regression, it is 
possible to describe the conditional variance of each estimate 
and thereby develop confidence intervals around the estimate. 

The conditional variance of the estimated response 
variable describes uncertainty in the conditional mean, for 
example, the estimated response variable, and describes the 
placement of the regression line. The conditional variance is 
calculated as

 ˆ |Y

i
T T
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i
T T
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1 1

1 1
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where
 Xi is the (M + 1) × 1 vector of the explanatory 

variables associated with observation i.
OLS regression requires multiplication by the MSE because 
the MSE is not embedded in the weighting matrix. For WLS 
and GLS regression, as discussed in this report for stream-
flow frequency statistics, the MSE is already embedded in the 
weighting matrix. This conditional variance represents the 
variability resulting from uncertainty in the regression coef-
ficients. The conditional variance is often referred to as the 
“sampling error variance of the regression.” However, the con-
ditional variance is different from the sample error variance of 
the response variable described with respect to equation 15.

Because estimated response variables are the means of a 
conditional normal distribution, the mean follows a Student’s 
t-distribution with N–M–1 degrees of freedom. This fact is 
used to construct the confidence intervals surrounding the 
estimated response variables. Specific confidence intervals are 

parameterized to a specific level of confidence. By tradition, 
confidence intervals are presented symmetrically around the 
estimate. The level of confidence is defined as 100(1–α)% 
where α is a value between 0 and 1. Such a confidence implies 
that observations can be expected to fall outside of the confi-
dence interval 100α% of the time, with each end equally prob-
able. The bounds are the interval are given as

 ˆ ˆ ˆ,, | , | / , |ˆY Y Y ti lower i upper i N M Yi i i iX X X2 1 , (48)

where
 t(α /2),(N–M–1) is the t-value that is exceeded 100(α/2)% of 

the time from a Student’s t-distribution 
with N–M–1 degrees of freedom. This 
value can be determined from a standard 
statistical table or most statistical software. 

Confidence intervals can be constructed for any level of con-
fidence, but, by convention, the 90- or 95-percent confidence 
interval is typically reported.

Confidence intervals describe the uncertainty in an 
estimated response variable given observations of the explana-
tory variable. They arise from uncertainty in the regres-
sion coefficients. However, the interval also quantifies the 
uncertainty in the placement of the regression line. Figure 12 
shows a 95-percent confidence interval for the regression of 
logarithmically transformed 10-year annual maximum daily 
streamflow and the logarithm of drainage area. The example 
demonstrates that the results of several different regressions 
can be included within the confidence interval. Each blue line 
is generated from an identically sized resample, with replace-
ment, of the original data.

Prediction Intervals
The confidence interval quantifies the uncertainty in 

the placement of the regression line or the uncertainty of 
the estimate that results from the uncertainty in regression 
coefficients. However, a confidence interval does not account 
for the uncertainty associated with a limitation of the model, 
namely the failure to explain all the residuals. For this prob-
lem, prediction intervals, which combine the uncertainty in the 
placement of the regression line with the uncertainty associ-
ated with the residuals, are needed. Prediction intervals give 
the expected range of estimated response variables when the 
regression is used in practice.

Similar to confidence intervals, prediction intervals are 
based on the distribution assumed for least-squares regression 
and an associated variance. In this case, the appropriate vari-
ance is the variance of prediction, � ˆ , |Y predi iX

2 , which is given as
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Because it is not possible to estimate the modeling error vari-
ance for OLS regression, the MSE is used instead. The square 
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root of the variance of prediction is often called the standard 
error of prediction. If the response variable is a logarith-
mic transform, it can be presented as a percentage using the 
approach discussed with respect to the MSE. Regardless, the 
prediction interval is then estimated as
 

ˆ ˆ ˆ,, , | , , | / ,Y Y Y ti pred lower i pred upper i N Mi iX X 2 1 ˆ , |Y predi iX
. (50)

As suggested by the additive term, prediction intervals are 
always wider than confidence intervals because of the addi-
tional uncertainty in the residuals and the regression itself. 
Figure 13 presents a prediction interval of the regression of 
logarithmically transformed 10-year annual maximum daily 
streamflow and the logarithm of drainage area.

The average variance of prediction across all observa-
tions used to develop the regression is a common summary 
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Figure 12. Graph showing a 95-percent confidence interval, in red, for the linear 
regression line, in black, based on data points, in gray, of the regression of logarithmically 
transformed 10-year annual maximum daily streamflow and the logarithm of drainage 
area. The dashed blue lines indicate the uncertainty in the regression coefficients 
and, therefore, the placement of the regression line. The confidence interval contains 
95 percent of the possible regression lines, but not 95 percent of the observed data. 

performance metric that is computed by taking the arithmetic 
average of variances of prediction. If the observations used 
in the analysis are representative of the population of possi-
ble observations, the average variance of prediction is a good 
measure of, as the name implies, the uncertainty inherent in 
using this regression for prediction. However, these sum-
mary metrics are not a substitute for a full cross validation of 
model performance.

Cross Validation
Coefficients of determination, MSEs, confidence inter-

vals, and prediction intervals are extremely valuable tools for 
understanding the performance, appropriateness, and relative 
power of a regression model. However, they are limited 
in scope. Evaluating the accuracy of the response variable 
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estimated from the regression by using the same observations 
that were used to develop the regression can be misleading. 
What needs to be known is how well the model is likely to 
perform when used to predict the response variable at sites 
not used for model development. Although tools such as 
the standard error of prediction try to answer this question 
theoretically based on the existing data, cross-validation 
procedures allow analysts to begin to answer this question 
more directly.

Cross validation of a model refers to the process where a 
portion of the data is set aside, and the remaining observations 
are used to estimate the parameters of the model. The devel-
oped model is then used to predict the response variables in 
the set-aside observations. Cross validation treats the set-aside 
observations as separate from the regression development, 
loosely simulating the process of true unobserved prediction.

Cross validation requires splitting the dataset into groups. 
For each split, there is one group that is set aside and one 
group that is used for model calibration. The size of each of 
these groups can be any portion of the data. For example, 
the data could be randomly split into halves for a two-fold 
validation. Similarly, the data could be split into thirds, using 
two-thirds of the data to calibrate the model and predicting 
the remaining one-third. This three-fold validation would be 
dense because the calibration set is larger than the validation 
set. When conducting a data split, it is important to consider 
random samples to avoid sampling bias in the calibration or 
validation set.

Another cross-validation scheme is the leave-one-out 
validation, also known as the remove-one or N-fold validation. 
Because this approach uses a calibration set that consists of all 
but one observation, the calibration set most closely represents 

Figure 13. Graph showing a 95-percent prediction interval, in red, for the linear 
regression line, in black, based on data points, in gray, of the regression of 
logarithmically transformed 10-year annual maximum daily streamflow and the logarithm 
of drainage area. The dashed blue lines show the 95-percent prediction interval, which 
contains approximately 95 percent of the data points.
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the full sample. By considering each observation in turn, it is possible to assemble a complete 
set of truly predicted values, Y̆i . These predictions can then be used to compute a prediction 
residual error sum of squares,

 SS Y YP
i

N

i i
1

2˘  
, (51)

which is also commonly abbreviated as the PRESS statistic. By analogy, the prediction error 
sum of squares can be combined with the total sum of squares to produce a prediction coeffi-
cient of determination, Rpred

2 , or a cross-validated coefficient of determination such that

 R SS
SSpred

P

A

2
1� � . (52)

Although other metrics are required for proper assessment, the prediction error sum of squares 
and the prediction coefficient of determination are some of the best measures of predictive 
performance.

Model Refinements and Other Issues

The development of a multiple linear regression model can be a highly iterative pro-
cess. Only by considering several sets of explanatory variables and proceeding through some 
degree of performance evaluation is it possible to develop an optimal model. After evaluating 
a specific model, there are countless modifications that can be made to improve model param-
eterization. Some methods are discussed in this section, including additional transformations 
and subregionalization. This section also discusses the steps to take when model development 
reveals problematic conditions, such as the presence of trends or censored values. Because 
least-squares regression may not be the best method to use, the section also discusses several 
available alternatives.

Variable Transformation and Retransformation Bias
Variable transformation was discussed at length in the “Exploratory Data Analysis” 

section. However, after fitting and evaluating a regression model, new tools are available for 
improved variable transformation. Partial-regression plots, as discussed in the “Variable Selec-
tion” section, are immensely useful for discovering advantageous variable transformations. 
Caution should be used when considering transformations of the response variable because, 
after estimation, retransformation of the response variable can introduce significant bias. Beau-
champ and Olson (1973) provide a seminal discussion of transformation bias for logarithmic 
transformations. The bias happens when values above and below the predicted response vari-
able are not equally probable. The need for a bias correction is largely a function of intended 
use and should be considered based on the acceptability of an asymmetrical distribution around 
the prediction.

Subregionalization
Multiple linear regression proceeds by accounting for the linear heterogeneity of the 

observations represented by the explanatory variables. However, unless the underlying physical 
processes are purely linear, it often is not possible to separately consider all sources of varia-
tion. In such cases, further partitioning may control for the heterogeneity in the underlying data 
or processes. When considering spatially distributed observations, such as streamgages, this 
partitioning is called subregionalization. However, partitioning does not need to be geographi-
cally based and several advanced tools exist for identifying subregions on other bases.

Subregionalization can improve the predictive accuracy and precision of regression 
models by grouping hydrologically similar observations together. If a regression model is 
developed for an entire set of observations, the model’s results can be used to evaluate if 
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subregionalization may be helpful. Although not the only approach, an analysis of the residu-
als from the domain-wide regression model can suggest where subregional models may prove 
advantageous. In such cases, data visualization and maps can be useful. However, it should be 
noted that subregionalization introduces additional parameters into the model.

After defining groups of observations, indicator regression can be used to simultaneously 
fit regression models to all groups. Indicator regression relies on a set of binary variables that 
indicate the membership of each group. Consider a bivariate relationship between two arbitrary 
variables Y and X with a set of observations that can be divided into three groups by underly-
ing soil types, producing regions A, B, and C. Indicator regression requires defining two binary 
variables, IA,i, which takes the value 1 if observation i is contained in region A and a value of 
0 if the observation is contained in another region, and IB,i, which takes the value 1 if observa-
tion B is contained in region B and a value of 0 if the observation is in another region. In this 
example, a third indicator variable is not necessary because the regions are mutually exclusive. 
The regressions for each region can be estimated simultaneously as

 Y I I X I X I XA B A B� � � � � �� � � � � �
0 0 0 1 1 1, , , , , ,C A B C A B . (53)

The values of β and ν can be estimated by standard regression techniques. Careful inspection 
reveals that, if the observation is contained in region A, the regression devolves to 

 Y X X X� � � � � �� � � �� � � �� � � � � � � � � �
0 0 1 1 0 0 1 1 0 1, , , , , , , , , ,C A C A C A C A A AXX . (54)

If the observation exists within region B, the regression devolves to

 Y X X X� � � � � �� � � �� � � �� � � � � � � � � �
0 0 1 1 0 0 1 1 0 1, , , , , , , , , ,C B C B C B C B B BXX . (55)

Finally, if the observation is categorized in region C, the regression devolves to

 Y C C� �� �
0 1, ,

X . (56)

Indicator regression allows for significance testing, so it can be used to determine if 
subregionalization is appropriate for a specific situation. In practice, it is often assumed that 
indicator variables only affect the intercept. However, interaction terms, those binary variables 
that are multiplied with other explanatory variables to produce alternate slopes, should also be 
considered (see Helsel and Hirsch, 2002) even though the interaction terms may or may not be 
significant. The example shows that subregionalization effectively introduces (M + 1)(NR − 1) 
new variables, where NR represents the number of regions. Recall that it was suggested that a 
minimum of 10 observations be available to support the addition of any explanatory variable 
or requisite coefficient. Clearly, extensive use of indicator regression can quickly exhaust the 
degrees of freedom in the dataset.

In lieu of indicator regression or subregionalization, a region-of-influence regression may 
prove useful. Region-of-influence regression defines, based on geographic, physiographic, or 
some other measure of proximity, observation-specific regions for each observation. This obser-
vation-specific region is then used to develop an observation-specific regression. In hydrology, 
these are typically site-specific, proximate regions. Further examples are provided by Burn 
(1990), Tasker and others (1996), and Eng and others (2005, 2007).

Trends
Multiple linear regression produces conditional estimates that are specific to a particu-

lar timeframe unless a representation of time is considered explicitly and tools for temporal 
regression are applied. For example, records of average rainfall from 1971 to 2000 may not 
provide accurate predictions of average streamflows in 2020. Because temporal structure is not 
addressed in standard regression models, it is extremely important to detect and account for 
any temporal trends or nonstationarity in the underlying dataset. In the regression of hydrologic 
frequency statistics, temporal structure is typically represented by trends in the streamflow time 
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series used to compute frequency statistics. Although beyond 
the scope of this report, the presence of trends can be tested 
for using several tests; Helsel and Hirsch (2002) suggest using 
either a Kendall’s Tau test or a Wilcoxon ranked-sum test to 
determine if trends are present.

Observations with trends may need to be treated dif-
ferently than observations without trends depending on the 
purpose of the analysis and the suspected cause of the trends. 
Natural variability in meteorological conditions can cause 
streamflow records to exhibit trends for short periods of time. 
An observation with a trend that is related to variability in 
precipitation should remain in the analysis because the trend 
is a result of natural variability. However, an observation 
with a trend that is the result of anthropogenic or nonnatu-
ral factors should be removed because the observation may 
confound the regression analysis. It may be possible to apply 
the statistical process of detrending to the data. However, if 
the aim of the analysis is not to detect purely natural condi-
tions, neither trend may be cause for concern. Regardless, 
trends should be documented and discussed in all reports of 
regression-based analyses.

Model Consistency
In streamflow frequency analyses, regression models 

are often developed for several different streamflow statis-
tics, such as events with a 1-, 5-, and 50-percent exceedance 
probability. If each event is considered independently, the 
resulting regression may produce nonintuitive results, such as 
a 5-percent event that is greater than a 1-percent event when 
the latter should be greater. Such nonintuitive results are more 
likely to happen when one or more explanatory variable is 
near the limit of the values for the sites used in the regression 
analysis. Testing should be done using hypothetical values for 
the explanatory variables to determine if nonintuitive results 
are obtained. One way to prevent the production of nonintui-
tive results is to have all the models contain the same explana-
tory variables. Although constraining the models will not 
guarantee consistent results, it is less likely that problematic 
estimates will be produced. This approach may cause some 
loss of predictive capability or parameter significance, which 
should be assessed in conjunction with the overall predict-
ability across all events. Constraining the models is a common 
approach, but the argument can be made that different events 
are controlled by different processes. Therefore, the analyst 
needs to decide how to proceed but all justifications should be 
documented with appropriate evidential support.

Zero-Valued Response Variables
In hydrology, streamflow statistics sometimes equal zero. 

In many traditional regression-based analyses, using stream-
flow statistics that equal zero is problematic because the sta-
tistics are often logarithmically transformed and the logarithm 
of zero is undefined. Some simple, but not ideal, approaches 
to dealing with zero flows have included avoiding logarithmic 

transformations, omitting zero-valued observations, and 
augmenting the observations by some small, positive value. 
However, each of these approaches have problems.

In most cases, failing to consider a particular transfor-
mation is not possible because the relationship between the 
response variable and the explanatory variable may require a 
particular transformation for linearity. Failing to treat this non-
linearity precludes the use of the linear regression techniques 
discussed in this report. Omitting zero-valued observations has 
been used in some cases, but this approach biases the regres-
sion because the omission misrepresents the lower tail of the 
distribution of the response variable and limits the range of 
applicability of the equations. Adding a small, positive correc-
tion to all values allows for the use of the logarithmic trans-
formation, but the selection of that constant is problematic and 
can substantially influence results.

One viable approach to the handling zero-valued obser-
vations is to use censored, or Tobit, regression (Helsel and 
Hirsch, 2002). Censored regression argues that zero-valued 
observations are near-zero-valued observations that represent a 
measurement below some censoring limit rather than true zero. 
Censored regression develops a linear regression on values 
above (for right-censored data) or below (for left-censored 
data) the user-provided threshold. Right-censoring refers to the 
situation where values above a threshold are censored and left-
censoring refers to the situation where values less than a speci-
fied threshold are censored. When the exact value of very small 
observations is effectively unimportant, left-censored regres-
sions can be utilized for regression-based regionalization stud-
ies. Because zero-valued observations are below the specified 
threshold, they do not need to be logarithmically transformed 
and the regression analysis can proceed. However, rather than 
relying on least-squares regression, censored regression uses a 
method of maximum-likelihood estimator.

In a hydrologic application, Kroll and Stedinger (1999) 
tested regression models that left out stations with zero-valued 
statistics, added a constant to all flows, and used a censored 
regression. The results suggest that censored regression 
is preferable to the other options discussed by Kroll and 
Stedinger (1999). Generally, censored regression is most 
appropriate when the proportion of values below the censored 
threshold is not large. Helsel and Hirsch (2002, p. 375) sug-
gest that censored regression is appropriate for small to mod-
erate amounts of censoring. Hirsch and others (1993, p. 17.50) 
suggest that censored regression is appropriate if censoring 
does not exceed 50 percent of the observations.

Another viable approach to handling zero-valued obser-
vations is to develop a two-step regression. In the first step, a 
logistic regression is applied to quantify the probability that an 
observation is equal to zero. If the logistic regression indicates 
the likelihood of a nonzero observation, then a multiple linear 
regression model is used to estimate the observation. This 
linear regression is set up using only nonzero-valued observa-
tions. Logistic regression, as the name implies, first attempts 
to fit observations as binary data, either nonzero-valued or 
zero-valued, to the logistic function rather than a straight line. 
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Logistic regression is most appropriate when there are many 
zero-valued observations. If there are not many zero-valued 
observations, it is not practical to fit the logistic function to 
the data. Helsel and Hirsch (2002, p. 375) suggest that logistic 
regression is appropriate for moderate to large frequencies 
of censoring. Hirsch and others (1993, p. 17.50) suggest that 
logistic regression is appropriate when there is at least 20 per-
cent censoring of observations. Both Hirsch and others (1993) 
and Helsel and Hirsch (2002) discuss censoring.

Alternatives to Least-Squares Regression and 
Linear Fitting

Least-squares regression is not the only tool for modeling 
relationships, linear or otherwise. Although beyond the scope 
of this report, it is important to note that alternatives to the 
methods presented in this report are available and constantly 
evolving and new and novel models are constantly being 
proposed. With respect to linear relationships, there are several 
method-of-moments and method-of-maximum-likelihood 
estimators. Another method, called robust regression, is less 
sensitive to individual outliers, and in that sense the solution 
is more “robust.” Helsel and Hirsch (2002) suggest that 
the Kendall Theil Robust Line is an alternative to censored 
regression for regressions involving low censoring. In Europe, 
a common approach to regionalization is to scale events by 
some index value, which in hydrology is known as the index 
flood method. Beyond the realm of linear fitting, artificial 
neural networks, regression trees, random forests, factor analy-
sis, and principal components analysis have all proven useful 
for regionalization studies in hydrology. Given the wide range 
of analytical methods, this report makes no effort to assess the 
appropriateness of alternatives to least-squares regression. 

Model Application and Documentation
An appropriately developed regression model can be 

used to estimate unobserved response variables. In hydrology, 
model application typically involves the estimation of stream-
flow statistics at ungaged points along a stream network or 
predicting natural streamflow characteristics at gaged water-
sheds that have undergone human modifications. However, 
such applications rely on the validity of the assumptions used 
in model development and the appropriate characterization of 
regression uncertainty.

When applying a regression model for prediction, it is 
important to keep in mind that the predictions are only as good 
as the underlying data and assumptions. Extrapolation beyond 
the range of the explanatory variables used for regression 
development is strongly discouraged. Outside of this range, 
estimates and their estimated uncertainties are unreliable. If 
sample observations used in the model are not representative 
of conditions at the target sites at which statistics are going to 
be predicted, the model should not be applied. Furthermore, if 

the underlying assumptions of the distributions of residuals or 
other diagnostics are invalid, the predictions are also unreliable.

In some hydrologic applications, an improved estimate 
of a streamflow statistic may be obtained by weighting at-site 
estimates, regression estimates, or scaled estimates. Bulletin 
17C (England and others, 2018) describes a weighting pro-
cedure for blending regional estimates and at-site estimates. 
The manual of the National Streamflow Statistics Program 
(Ries, 2007) describes tools for scaling proximate estimates by 
upstream drainage area that are particularly useful for ungaged 
sites immediately upstream or downstream from a gage.

The culmination of any regression-based regionaliza-
tion study is complete documentation of data collection and 
exploration and model development, evaluation, and applica-
tion. Complete documentation is essential for reproducible 
science. A report on the model development allows users of 
the regression model to assess the suitability of the model for 
their purposes and provides a useful record of the analysis 
for future updates. Although it is not necessary to exhaus-
tively document every aspect of data and model exploration, 
it is important to document all computation and analysis 
methods and justify all conclusions. All data used to develop 
the models should be published and archived, including geo-
graphic information system data used to compute the basin 
characteristics. In addition, guidance and examples should 
be provided on how users can apply the models to obtain 
estimates at ungaged locations.

Conclusions
Multiple linear regression is a powerful tool that can be 

used to quantify the relationships among the response variable 
and the explanatory variables. In practice, this tool aids in the 
regionalization of surface-water statistics including streamflow 
frequency statistics. Some regression-based regionalization 
studies may require an alternative approach (for example, in 
the presence of highly nonlinear processes), but the essential 
steps of a standard regression-based regionalization study are

• Project outline.—Determine the questions that are to 
be assessed and the variablthanes of interest.

• Data collection and quality assurance.—Gather data 
on the selected variables of interest, taking care to 
note, address, and document any concerns with the 
quality of the underlying data.

• Exploratory data analysis.—Develop an insight of the 
data by evaluating the summary statistics, distributions, 
and relationships among the different variables.

• Candidate model development.—Develop several 
candidate regression models based on the information 
developed through exploratory data analysis. Based 
on the project goals and the characteristics of the data, 
use appropriate tools to estimate model parameters and 
evaluate model performance.
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• Finalized model development.—Based on evidence 
derived from exploratory data analysis and the devel-
opment of candidate models, arrive at an appropriate 
and defensible model of the system in question.

• Model application.—If necessary, implement the final 
model to meet the project goals.

• Documentation.—Document all aspects of the project, 
from goal setting through candidate model evaluation 
to model application. Although exhaustive documenta-
tion of all intermediate steps is not necessary, the final 
documentation should present a defensible and logical 
narrative supporting the acceptance of the final model 
and a cknowledge any limitations encountered along 
the way.

• Archive.—All data and model formulations included in 
the documentation should be archived in a stable for-
mat so that the study can be reproduced in the future.
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Appendix 1. Glossary of Terms

Bias The difference between the expected value of 
an estimator and the true value; bias is often understood as 
the difference between the observed mean and the mean of 
estimated values. More generally, the tendency to overestimate 
or underestimate the value of a population parameter.

Correlation A measure of the degree to which two 
variables change together.

Covariance Similar to correlation, a measure, although 
in the multiplicative units of the two variables, of the degree to 
which two variables change together.

Heteroscedasticity The state in which the variability 
of a variable is not constant across the range of values 
of a second variable used to predict it. The opposite of 
homoscedasticity.

Homoscedasticity The state in which the variability of 
a variable is constant across the range of values of a second 
variable used to predict it. The opposite of heteroscedasticity.

Population Often unmeasurable, the entire, exhaustive 
set of observations from which a sample is drawn.

Residual error The difference between an observed 
value of the response variable and its estimate.

Sample A finite set of observations drawn from the 
larger population.

Spurious correlation A false correlation between two 
variables that can be attributed to coincidence or to another 
factor that is not apparent at the time of examination.

Statistical independence Two observations or variables 
are considered to be statistically independent if the value of 
one has no effect on the probability distribution of the other. 
That is, a specific realization of an observation or variable 
does not make the second observation or variable more or less 
likely to take on any specific value.

Statistical significance A result is considered 
statistically significant if it can be demonstrated that there 
exists only a small probability that the given result could have 
happened by random chance. Significance is only meaningful 
in the context of a statistical test of null and alternative 
hypotheses.

Variance The second central moment of a dataset, a 
measure of variability, taken as the expectation of the squared 
deviation of a random variable from its mean.
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Appendix 2. Glossary of Symbols

Table 2.1. Glossary of symbols.—Continued

[Shading indicates not applicable. MSE, mean squared error]

General 
symbol

Specific 
realizations

Description
Equation 

number(s)

Variables

Ch A coefficient used to determine the critical value of leverage. 34

D Cook’s D, a measure of influence 35, 36

Dlimit
The critical value of Cook’s D, above which observations are considered to be 

particularly influential. 36

GLS Generalized least squares 24

GLS−skew Generalized least squares with an adjustment for uncertain skewness 27

IA and IB
Binary indicator variables that take values of 1 only if the observation is in the 

subregion defined by the subscript. 53

K The deviate of the log-Pearson Type III distribution that is used to estimate the 
response variable for each observation. 24, 27, 28

K The average log-Pearson Type III deviate used across all observations 19

L A matrix used for the calculation of Cook’s D 35

M The number of explanatory variables used in a model 1, 2, 3, 26, 35, 38, 43, 45, 
48, 50

MSE MSE—When not indexed or indexed with i, this symbol refers to the mean square 
residual from the regression. 45, 46, 47, 49

MSE % The root MSE expressed as a percentage 46

MSEgi
The estimated MSE of the at-gage estimate of skewness. The estimate is gage 

specific, so it is indexed with i. 21, 22

MSEgreg The estimated MSE of the regional estimate of skewness 21

N The number of observations available for model fitting
8, 11, 12, 18, 26, 31, 34, 
36, 38, 42, 43, 45, 48, 

50, 51

NR The number of regions used for subregionalization

OLS Ordinary least squares 16, 38, 47

R2 The coefficient of determination 41

R2
adj

The coefficient of determination adjusted for the number of explanatory variables 
used in regression 43

R2
k

The coefficient of determination from a regression of explanatory variable k as 
predicted by all other variables 37



Appendix 2  37Appendix 2  37

Table 2.1. Glossary of symbols.—Continued

[Shading indicates not applicable. MSE, mean squared error]

General 
symbol

Specific 
realizations

Description
Equation 

number(s)

R2
pred

An analog to the coefficient of determination based on the prediction residual sum 
of squares 52

R2
pseudo

An analog to the coefficient of determination based on the relative improvement 
in the model error variances 44

SS Sum of squared errors

SSA Total or sum of all squares 41, 42, 43, 52

SSP Prediction residual sum of squares (PRESS) 51, 52

SSε Residual sum of squares 8, 38, 41, 43, 45

VIF Variance inflation factor, typically indexed with k 37

WLS Weighted least squares 17

X

The matrix explanatory variables with the number of rows (N) rows and M 
columns. Rows represent unique observations (for example, sites) and columns 
represent individual explanatory variables.

The sites are typically indexed with i of j, but the variables are typically indexed 
with k.

1, 2, 3, 9, 10, 11, 12, 13, 
26, 33, 38, 47, 48, 49, 53, 

54, 55, 56

Y The response variable, which is typically represented as a vector of observations, 
and indexed with i.

1, 2, 4, 6, 8, 9, 11, 12, 13, 
14, 26, 42, 51, 53, 54, 

55, 56
ˆ

, , |Yi pred upper iX
ˆ

, , |Yi pred lower iX

The upper and lower limits of a prediction interval around the regression estimate 
of Y 50

ˆ
, |Yi upper iX

ˆ
, |Yi lower iX

The upper and lower limits of a confidence interval around the regression estimate 
of Y 48

Ῠi The estimate of Yi from a regression built on all observations except Yi 51

 Y̅ The mean of all observations of the response variable 42

Ŷ A vector of estimates of the response variable, typically indexed with k 3, 4, 5, 8, 10, 47, 48, 49, 50

Ỹ A vector of the unobservable true value of the response variable, typically indexed 
with k 5, 6

Zp or Zpr The standard normal quantile with the subscripted nonexceedance probability 28, 32

c This symbol is used to represent a set of generic coefficients used in numerical 
computation.

c1 17, 18, 19

c2 22, 23, 29

c3 22, 23
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Table 2.1. Glossary of symbols.—Continued

[Shading indicates not applicable. MSE, mean squared error]

General 
symbol

Specific 
realizations

Description
Equation 

number(s)

c4 22, 23

c5 29, 30

c6 29, 30

dij The separation distance between the two subscripted sites 25

m This symbol is used to indicate the length of the data record.

m i,j The length of the overlapping period of record between the subscripted sites 24, 27

mi The record length at the subscripted site 17, 18, 22, 23, 24, 27, 
29, 30

p This symbol is typically reserved for probabilities 28

p
kβ

The probability that the estimate of the subscripted coefficient would be observed 
if the true value of the coefficient were zero 40

pr Nonexceedance probability of the subscripted rank 31, 32

r The rank of a residual error 31, 32

t A Student’s t statistic 40

t N M� / ,2 1� � � �� � A Student’s t statistic with an exceedance probability of 
α
2

 and N M� �� �1  
degrees of freedom

48, 50

t
kβ

The Students t statistic associated with the estimated value of the subscripted 
regression coefficient. The degrees of freedom are taken to be N M� �� �1 39, 40

g The at-gage skewness of the log-Pearson Type III distribution used to estimate the 
response variable for each observation; typically indexed with i 20, 22

gw The average log-Pearson Type III weighted skewness used across all observations 19

gReg The regional log-Pearson Type-III skewness used at each site 20, 27, 28, 29

gw
The weighted skewness of the log-Pearson Type III distribution used to estimate 

the response variable for each observation; typically indexed with i 20, 24

h A square matrix whose main diagonal elements represent the leverage of each 
observation 33, 34

hlimit
The critical value of leverage above which observations are considered to have 

high leverage 34

Ʌ An N-by-N matrix of weights on the observations of Y, typically indexed by i and 
j. This symbol is also commonly called a covariance matrix. 14, 33, 35, 38, 47
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Table 2.1. Glossary of symbols.—Continued

[Shading indicates not applicable. MSE, mean squared error]

General 
symbol

Specific 
realizations

Description
Equation 

number(s)

Λ̂ An estimate of the weighting matrix 17, 24, 26, 27

α A probability used for assessment of statistical results, often known as the signifi-
cance level 48, 50

β

Coefficients describing the linear relationship between Y and X, typically indexed 
with k

Without any modification, this symbol usually represents the true values that 
cannot be observed.

1, 38, 39, 40

β0,A and β1,A
β0,B and β1,B
β0,C and β1,C

Regression coefficients derived for subregionalization using indicator regression 53, 54, 55, 56

β0 or β̂0
A coefficient with the reserved subscript to define the constant additive term of 

the model 1, 2, 3, 9, 10, 11

β̂ An estimation of the linear coefficients, typically indexed with k 2, 3, 11, 12, 13, 14, 26, 39

δ A vector of model errors from a fitted regression, typically indexed with i 5, 7, 15, 17, 18, 24, 27, 49

ε A vector of residual errors from a fitted regression, typically indexed with i 2, 4, 7, 8, 13, 15, 18, 35

ε̂ The theoretical residual based on the assumptions of normality 32

ε̅ The average residual 32

η A vector of sampling errors for a particular statistic, typically indexed with i 6, 7, 15

θ1  and θ2

Fitting coefficients used to approximate inter-site correlation based on separation 
distance 25

ρ̂ Approximated cross-correlation among the time series of streamflow used to 
calculate the streamflow statistic, typically indexed with i and j 24, 25, 27

σ 2 This symbol is used to indicate some sort of variance, although the square root is 
used to indicate a standard deviation.

ˆ
k

2 Variance of the estimated value of the subscripted regression coefficient 38, 39

σ 2 The squared arithmetic average of the standard deviation of the annual time series 
of streamflow used to compute the response variable at each site 19

� ˆ , |Y predi iX
2

The conditional prediction variance on Ŷ given a particular observation of X 49, 50

� ˆ |Yi iX
2

The conditional variance on Ŷ given a particular observation of X 47, 48, 49

σ gi
2 The approximated variance of the at-gage skewness 27, 29

σ i
2 The standard deviation of the annual time series of streamflow used to compute 

the response variable at site i 24, 27
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Table 2.1. Glossary of symbols.—Continued

[Shading indicates not applicable. MSE, mean squared error]

General 
symbol

Specific 
realizations

Description
Equation 

number(s)

�� |0
2 The modeling error variance for a model with no explanatory variables, using 

only a regression constant 44

�� |M
2 The modeling error variance for a model with M variables 44

��
2 The modeling error variance 15, 17, 18, 24, 27, 49

�� |OLS
2 The modeling error variance derived from a model fit with ordinary least-squares 

regression 18

��
2 The variance of residual errors 15, 32

��
2 The sampling error variance 15

ν0,A and ν1,A

ν0,B and ν1,B
Regression adjustments fitted through indicator regression for subregionalization 53, 54, 55

ω The weights defined by MSE to compute weighted skewness values, typically 
indexed by i 20, 21, 27

Functions

 The absolute value of the argument 40

��
��

The partial derivative of the numerator with respect to the denominator 27, 28

 | Typically read as “given,” implying that the preceding argument is realized based 
on the condition of the following argument 18, 44, 47, 48, 49

Prob �� � The probability of the argument 40

ln �� � The natural logarithm of the argument 46

max �� � The maximum value of the arguments 18

T The transpose of the item being superscripted 14, 26, 33, 38, 47

e A mathematical constant 46

Indices

i This index is reserved to point to different sites; as such, it runs from 1 to N. 8, 11, 12, 16, 17, 18, 24, 
27, 47, 48, 49, 50

j This index is reserved to point to different sites; as such, it runs from 1 to N. 16, 17, 24, 27

k This index is reserved to point to different explanatory variables; as such, it runs 
from 1 to N. 37, 38, 39, 40

[ This subscript is used to indicate that all values in the row or column are being 
described. 1, 2, 3, 9, 10





Farm
er and others—

Regionalization of Surface-W
ater Statistics Using M

ultiple Linear Regression—
Techniques and M

ethods 4–A12 

ISSN 2328-7055 (online)
https://doi.org/10.3133/tm4A12

https://doi.org/10.3133/tm4A12

	Abstract
	Introduction
	What is Regression?
	Framework for a Regression-Based Regionalization Study
	Description of an Example Dataset

	Data Assembly
	Region Definition and Site Selection 
	Record Extension and Augmentation
	Nested Basins

	Streamflow Statistics as Response Variables
	Basin Attributes as Explanatory Variables


	Exploratory Data Analysis
	Model Estimation
	Principles of Linear Regression
	Least-Squares Regression
	Ordinary Least-Squares Regression
	Weighted Least-Squares Regression
	Generalized Least-Squares Regression

	Conclusions

	Model Evaluation
	Structural Diagnostics
	Residuals
	Leverage and Influence
	Variable Selection

	Performance Diagnostics
	Coefficient of Determination and Mean Squared Error
	Confidence Intervals
	Prediction Intervals
	Cross Validation

	Model Refinements and Other Issues
	Variable Transformation and Retransformation Bias
	Subregionalization
	Trends
	Model Consistency
	Zero-Valued Response Variables
	Alternatives to Least-Squares Regression and Linear Fitting


	Model Application and Documentation
	Conclusions
	References Cited
	Appendix 1. Glossary of Terms
	Appendix 2. Glossary of Symbols

	Figure 1. Diagram showing a generalized work flow for a regression-based regionalization study.
	Figure 2. Correlation matrix plots comparing selected explanatory variables.
	Figure 3. Scatterplots showing relationships between the response variable (10-year annual maximum daily streamflow) and selected explanatory variables.
	Figure 4. Scatterplots showing the relationships between the response variable (10-year annual maximum daily streamflow) and average annual precipitation. 
	Figure 5. Scatterplots showing the effect of transforming response and explanatory variables.
	Figure 6. Graph showing the response variable (10-year annual maximum streamflow) and explanatory variable (drainage area), whose observations are represented in the scatterplot, linearly regressed against each other to produce the dashed line in this bivariate example.
	Figure 7. Graph showing the relationship between the response variable (10-year annual maximum streamflow) and explanatory variable (drainage area).
	Figure 8. Scatterplots showing residual errors plotted as a function of the response variable (predicted 10-year annual maximum daily streamflow).
	Figure 9. Example of a normal probability plot for checking the normality of residuals.
	Figure 10. Scatterplots showing examples of leverage with and without high influence.
	Figure 11. Partial-residual plots for the example regression with two explanatory variables.
	Figure 12. Graph showing a 95-percent confidence interval, in red, for the linear regression line, in black, based on data points, in gray, of the regression of logarithmically transformed 10-year annual maximum daily streamflow and the logarithm of drainage area.
	Figure 13. Graph showing a 95-percent prediction interval, in red, for the linear regression line, in black, based on data points, in gray, of the regression of logarithmically transformed 10-year annual maximum daily streamflow and the logarithm of drainage area.
	Table 2.1. Glossary of symbols.



