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Introduction

In tidal work numerical filters are used either to remove unwanted
frequencies from the observations or to isolate a particular band of
frequencies so that the filtered data can be analysed smoothly.

Principle of a Filter

If a certain sequence of operation, like summation or difference of
observations n units apart or average of n successive observations, etc.
is performed on a time series then a spectrum could be assigned to each
such operation. Such operations will modify the spectrum of the data.
A function which defines such a sequence of operations is known as a
filter or smoothing operator. Thus filtering involves the carrying out
of certain operations on the observations to create a new sequence of
numbers so that the spectrum of the new sequence satisfies our requirement.
Different filters suggest different operations on the data.

Tvype of filters

Basically there are two types of filters 'A,' and 'Sp' type. A,
filters involve the addition of two observations nat time units apart.
Sp filters involve the subtraction of two observations nat time units
apart, oCp filters are extended form of Ap filters and involve the
summation of n consecutive observations of a time series. Note that
oL o= A The formalism of response functions of these filters are :
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At is the time interval of observation,-f is the frequency in cycles per
unit time, n as described above. Response functions for the above filters
are shown in Fig. 1 to Fig. 3.

Fig. 1A and Fig. 2A show response functions of 'A' and 'S' filters
respectively. The abscissa in these figures is in At units which can
be converted to appropriate frequencies according to the time interval t.
'A' filters are low pass filters and 'S' filters are high pass. The
number of frequencies filtered varies with the value of n. As the value
of n increases the response functions start to oscillate, thus allowing
to pass a portion of higher frequencies in the case of 'A' filters and
lower frequencies in the case of 'S' filters. Application of a filter to
filtered data is the equivalent of applying the product of two filters.
Figs. 2A and 2B show the response functions of such multiple filters.
A multiple filter of type A; A, i.e. A 2 is a more efficient low pass
filter than Aj. Similarly A1 is betler than Aq2. The same effect is
evident in Sq< and 813 in suppressing the lower frequencies. Products
of filters like Aq Ap Az; Sq Sp S35 A4 Aq Sq93 Aq Sp S, etc. act like band
pass filters (see Fig. gC and Fig. 3A). Responses ofoC filters and their
products are shown in Fig. 3B.oK filters, particularly their products are
very useful to the tidal and current analysis to cut off high frequencies.
These filters are easy to apply to a time series as the sequence of
operation involves only the summation of n consecutive numbers.

By understanding the responses of these basic filters several varieties
of filters can be devised according to the nature of problems involved.



In tidal work mostly low pass filters are used. Most common low pass filters.
are of the following type:
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let the observations be denoted by 1,~g2,~;3, se» the application of above
filters will require either 3n or 3n-1 terms respectively as evident from the
following:
Application ofocn+1 to Z, series means generating a new series, say x, where

n
x, = = Gj+k where k =1, 2, 3, cee?n
i=0

Thus,
x1 -;1 +€2 + 000514'.1
x2 =z2 +g3 + ...zﬁ""z
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Y; series of 3n is reduced to x series of 2n terms.

2
Application ofl n+1 to Z; series is equivalent to the application ofaCh+1
to the x series to generate a new series, say Y, where

n
Y = E where'C: 1, 2g see 1
17 5= Xl
Thus,
Y1 =x1 +x2 4+ eee xn+1
Y2 = X, + x3 +oeee X
Yn = xn + x2 + eee x2n

x series of 2n terms is reduced to Y series of n terms.

Applying o{ to the Y series means obtaining the sum of n consecutive terms of
Y series, to give a term Z1.

Thus,

Z1 = Y1 + Y2 + ooan

on dividing Z, by the normalizing factor n (n+1)2, will give the filtered value

of the observations involving 3n terms. The above filters can be applied in the
following two ways:-—

i (1) Apply the filter starting with the first term of the observations to
gLve Z1 and then apply again starting with the second term of the observations to



give Z, and so on. The Z series will have the same time interval as the original
series but several frequencies will have been removed (in the above case higher
frequencies will be removed) according to the filter involved.

(1) Apply the filter starting with the first term of the ‘observations to
give 2, and then apply again starting with the nth term of the observations to
give Z, and so on. In this case the Z series will have the time interval nAt.
Thus uSing the above filters in this way we can change observational interval
from a smaller unit to higher, at the same time smoothing out the unwanted
frequencies according to the design of the filter.

Fig. L gives response functions of some of the typical filters. These
curves suggest that for each filter, various frequencies are filtered in different
ratios. Therefore percentage reduction of the various frequencies in each filter
should be known so that it can be taken into account in the analysis. The
abscissa in Fig. 4 is also given in terms of cycles per day so that the reduction
in various harmonies can be computed from the graphs for any particular filter.
Table 1 readily gives the percentage reduction in amplitude for different species
with respect to each filter.

TABLE 1.
At Smoothing Operator Number of Reduction in amplitude of the
Min (Filter) Data Lost Species No. in Percentage
1 2 L 8
5 —1 o2 36 +93 3469 14+31 148.28
122‘”“ 12 7Y,
10 1 o2 oL 17 +86 369 1407 L4768
62 6 7
7
15 — L2 g 1 *78 378 1446 18483
W25 b0

Filters can also be applied in reverse sense i.e. a low pass filter can be
used as high pass by substracting the filtered value, after normalizing, from the
appropriate value of the original data. Similarly a band pass filter can be used
as band suppress filter.

Time representation of a filter (making a stencil of a filter)

It is sometimes convenient to represent a filtering operator in the form of
a stencil for the use of computers. The method is that the filtering operators
are represented by a set of polynomials® which have identical multiplicative and
additive properties as filtering operators themselves. Expanding the polynomials
and equating zero power as the central observation the required factors to be
multiplied to successive observations can be calculated. Polynomials associated
with basic filtering operators are given below:
n -n
Azﬁe———)x + x

S xn - x
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* Known as Aragnol Polynomials.

** I is the unit filtering opergtor having 1 as multiplier to k™ observation
and O for the rest, where k=~ observation is the Central observation of a
sequence. e.g. If (1 + Au) is applied to a sequence g1, ~¢_;2, §3’ PN

Applying A will give g +
Applying I}+ will givey Ndte that g, is the Central observation of this

(
filter). Therefore apglying (I + Alj will give Z‘| =2, +~53 +§5‘

In the above n may be an integer or a multiple of 3, indicating spreading
out of date points on egch side of central observation. Suppose we want to make
a stencil of a filter S,. This means quppliqu:ion of S, filter twice i.e. S Sz.
32 is reprg;i:ented ir_;1pogynomials as (x =-x ). In this the coefficients og

¥°=0,x =1, x ==1. In stencil form:
Multipliers terms
s 0 kP
2
. th
(In stencil form where 1 (k+1)
th th
k"~ term taken as -1 _(k-1} .
central observation) 0 Remaining
where k is the kth term of the data series.
In terms of data say, ];1, 52, §3’ o this means generating a new
sequence Y so that, .
Y, =855
Y2 =~._=,l+-g2
Y, =% _~-
f5 =%57%

Theo =%5"8n0
Note that this filter is spread out tg one data point on each side of the
ce?tral_?biervajz‘ion. OSimi_l_arly applying 52 will give in terms of polynomials
X -X =x = 2x + x which in stencil form:

Multipliers terms
2 th
82 -2 k
(In stencil form where 0 (k+1 )th
kth term taken as 1 (k+2)th
central observation) 0 Remaining
In terms of data say %4+ Lo ‘63, .o the application of Sg means

generating a new sequence of Y so that,



Y1 = 51—2%+%
Y. = )':?-2‘51;:‘6
¥

n-lh. = zn-h—2%-2+§1

Note that this filter is spread out to two data points on each side of
the central observation. Similarly it can be shown that the cube of this
filter will spread out to 3 data points on each side of the central observation
and so on. Thus spreading out of a filter can be calculated from its polynomial
notation by equating zero value of n as the central observations and then
highest value of +n will indicate spreading.

Conversion of a filter to a stencil can be understood more clearly by the
fellowing examples :

Example 1

Teo make a stencil of Doodson Diurna} Filter (x1) for hourly observations
where filtering operator is A2 A4 A6 S12'.

Representing the filtering operator by polynomials
A, Ah Ag 812%t———¢(x1+x-1) (x2+x-2) (x3+x-5) (x6-x-6)2
Simplifying the right hand side will give
(x3+~x1+x—1+x-3)(x3+x_3)(x6-x-6)2
L .2 N ) (xé_x-6>2

6 -
(x +xF4x“+14x “4x

—12)
6

(x6+xh+x2+1+x-2+x_4+x-6)(x12+2+x

2 2

x"w+x_16+~x-u*+2x-12+x"1o+x_8 —ox o™ ~L-2x

-

L 6 8 10 . 12 14 16 _18

=2X =X 4+X X 42X THX . AKX X

The right hand side indicptes that all the odd terms are zero and if we
take central observation for x then the filter spreads out to 18 hourly
observations on either side. Therefore x, stencil will be:

1
Multipliers terms
r- 0 All odd
o kth
x, -2 (k22) ™, ()
(In stencil form, -1 (kiﬁ)th
kP term taken as 1 (128) %P, (k210)™8, (ka1s)®?
central observation) (kiﬂ6)th, (kﬁﬂg)th
| 2 (1‘:¢12)JCh
0 Remaining



xample 2

To make stencil of filtering operator ~3**ﬁc6 S for observations 10 minutes
interval apart. 657

The constant can be applied later to the result.

6%+7
Representing the filtering operator by polynomials.

-

L °C7«~—>[. | 55; =
k=-3

=5 =2 -1 4 5..5
9] 2 - -
= (x “4x 2ex ° x?+x2+xd) 2 (x axLax 1+xo+x1+x2+x3)
4 e Z
- ):"8+3x"7+6x'°+10x—5+15x.}++2‘lx')+?_6x'2+?9x"1+30xo+29x1

" Q
+26x‘+21x3+15x4+10x6+5x7+x"

The filter spreads ouB to B observations on either side of central
observations which is at x.

Multipliers terms

30 KB
9 (k21)0
o 7 o« 26 (ka2)tP
(In stencil form where 21 (kiﬁ)th
k' term is taken as 15 (Kih)th
central observation). 10 (kij)th
6 (k46)™8
5 (ka7) R
1 (158 0

L__,, 0 Remaining

Factors determining the application of filters in basic operation form or

in stencil form.

Application of a filter in basic operation form involves as nany steps
as the number of factors arepln the filtering operator. #As an example, Doodson
Diurnal Filter (Ho Al A ) has five factors and its application in basic
operntion form intolVes flvn steps, although each step comprises of either simple

addition or subtraction. This filter in stencil form (Axamnlp 1 on pare (b)



requires one step in which multipliers are applied to the respective data. It
is therefore inferred that the basic operation form becomes cumbersome for hand
calculations as every step requires to be recorded for use in the next step and
so on until the final filtered value is obtained. DBut this method can be con~-
veniently used in computers without printing out values after each step until
the final step is completed. Thus basic operation form is recommended for com-
puters and stencil form for hand calculations.

For filters containing of , basic operation form is the most suitable as
these filters usually do not have more than 3 factors in them. Yoreover, in
stencil form o filters generate large multipliers (see example 2 on page 6 )
making hand calculations slightly difficult.

A multiple filter program (POLYFIL) has been written, using basic operation
form, in rortran for KDF9. It is a general program involving basic filtering
operatorsol , A, S_and I wheren =1, 2 ... 99. For details see the instruc=-
tions for PORYFIE.

Application of Fig, 4 to practical problems

Four Low Pass filters are illustrated in Fig. 4. These filters are useful
for eliminating higher frequencies, like seiches from a tidal record, and for
smoothing current observations for tidal stream amalysis. Following examples
illustrate the application of Fig. 4 to such problems:

Lixample 1

A tidal record of 5 minutes interval is contaminated with seiches of L5
minutes period. Select the best suitable filter from Fig. L to smooth out the
seiches.

Period of seiches is 45 minutes, therefore the frequency of seiches = 1¢33 c.p.h.
In Fig. 4 read abscissa on scale At = 5 Min. (Sampling Interval).

1+33 c.p.h. on this scale is marked with dotted arrow; produce a line from this
point on curve C and D and read the responses on the vertical scale.

i

»02
’36.

Response for filter C

i

Response for filter D

Therefore the reduction in seiches amplitude for filter C is 98% and for filter
D is 64%.

Hence, filter C is suitable,
From the figure it is clear that A and B are also suitable filters as their cut
off points lie on the left of the seiche frequency. DBut there are certain

advantages in using filter C over A and B, such as:

(1) The reduction in the amplitude of the tidal species is less in C as
compared to A and B. The most reduction is in A.

(1) Fewer data points are required for the application of filter C as
compared to A and B and hence less computation. The largest number of data points



are reqguired for filter A,
Lxample 2

Current observations taken at 10 minute intervals are required to be
smoothed and converted into hourly observations for tidal stream analysis.
Select a suitable filter for this purpose from Fig. L.

In Fig. 4 read abscissa on scale marked c.p.d. (left hand corner). Against

At = 10 min. (sampling interval) various harmonics are marked up to 12. If the
tidal stream analysis is restricted to species up th 6th diurnal, produce a line
from 6th diurnal point on the scale on curves 3, C and D.

Compute responses from vertical scale which are:

= <18
= 72
= +88

Therefore reduction in the amplitude of 6th diurnal species will be:

B = 8%
cC = 2&
D = 12¢

Hence filter B is not suitable. The choice is between filters C and D. It
can be seen from the Fig. 4 that filter D would allow more high frequencies to
pass than filter C. Filter D cuts off at 23 c,p.h. and filter C at 1+4 c.p.h.
Otherwise there is not much difference in both these filters, as far as computa-
tion effort is concerned. Only two data points more are required for computation
of filter C as compared to D. Therefore filter C should be used for this problem.

In order to convert the data into hourly intervals, apply the filter
starting with 1st observation and record the filtered value which is appropriate
to the 9th observation. Next apply the filter starting from 7th observation
i.e. after six 10 minute intervals, and so on.



RESPONSE OF FILTERS A (LOW PASS) & S (HIGH PASS).

FIG. | A. | FIG. | B.



RESPONSE OF THE POWERS OF FILTERS A& S

1

FIG. 2A.

FIG. 2B.

FIG. 2C.




RESPONSE OF THE PRODUCTS OF FILTERS A& S RESPONSE OF FILTER o AND ITS PRODUCTS

Ir

FIG. 3A. FIG. 3B.



SMOOTHING FILTERS FOR TIDE AND CURRENT OBS.
TIME INTERVAL At UNITS

1 2
A= o oK
24225 % B
- 9 2
.8 B= 12214 “19 “14
- i 2
€= 627 %6 %
. 2
-6 25 T4 %
.‘-4
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'05 '1 '2 fAt—> '3 “ ’5
\3E 7% 25 25 2 K 2% 2 I I T v 4
0o Vv v i 2 3 4 5 6 At=5 MIN
v CYCLES / HOUR 3 At=10 MIN
At= SMINCPD 4 8 12 16 20 2 g At=15MIN
At=10MINCPD 2 4 6 8 10 12 5 Atz 1HR.
At=15MINCPD 2 4 6 8
At= 1 HR. CPD 1 2 FIG. 4.



