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1) Introduction
It washown in Vanifek [8] that the mean-quadratic distance e (F)T*)

given by

22 2 (FCU‘T*CJC)\)QJ | ‘1
e tey

where ¥ is a given function defined on a set WZ,, of equidistant points, and
Ti‘ is the generaiised trigonometric polynomial,

T*= @, + @¢os wt + b sinwt v B 2

—

whose coefficients g = ga‘,;a}b} for any frequency w are determined by

the set of normal equations ' .
M3 = ¢ 3

wa L= {5 FO,ZF@eset, ZFOsinut T can ve rogarded as a

" transformation of F into frequency space if we take W as free parameter.
It has also been shown that such a transformation has the following useful
properties :

i) If F is represented by a simple sinusoidal curve with a frequency
& then the absolute minimum of Qa‘ is achieved for w=(u.;

ii) Q"" is invariable in the transformation F-»F4+ const.

In the present paper, we are going to show that the method can be used
for analysing functions defined on any set 7Zn of unequidistant points, just
as easily as a function defined on a set of equidistant points.

Further the method is adaptable to allow for cases when [ is assumed to
be a combination of (a) constituents of known analytical form and unknown
magnitudes and (b) periodic constituents of unknown periods as well as
magnitudes. 'fhe constituents of the known analytical forms will be further
referred to as “"known" constituents. In other words this means that the
transformation cah be altered in such a way that the functions, periodical or
non-periodical, the presence of which is known beforehand can be used to

improve the spectral image even if we do not know their magnitudes.



For simplicity, we shall be using mainly the "complement" 6 of O :
2 2
Glw) = Z F(t) — @ (w) 4
te7,
that gives the location of predominant frequencies in the form of maxima
(peaks) instead of minima, as the former is the familiar way in the spectral

analyses in general.

2) Random number tests

In order to determine whether a bias towards or against any particular
frequeﬁcy exists in the least squares spectrum (4), tests have been carried
out using two different time series containing 599 pseudo random numbers
each. These numbers have been generéted from methods described in Pike and
Hill [4). The procedures
available in the standard procedures library of the Liverpool University
KDF9, The distribution of probability of the first set is normal and the
second rectangular, In order to obtain comparable values in the two analyses
the spectrum is plotted in the units of EC/ZF* which we call proportionate
variance. The results are in Fig. 1a and 1b. Few peaks are recorded in
both analyses which have spectral values of magnitude surpassing 2% but within
3% of the upper limit,i.e.iiFfz . Their distribution appears to have random
characteristics. The appearance of these "larger" peaks may be assigned
‘either to the short span of data or the processes by which these numbers have
been generated. The larger span of data should tend to diminish the
amplitudes of these peaks., Comparison of ihese analyses does not seem to
indicate a bias towards or against any frequency.

3) Comparison with power spectrum

Power spectrum of a time series is computed from a cosine transform of
auto covariances and the values thus obtained indicate the amount of energy
against frequency, see for instance Blackman and Tukey [1]3 whereas the least
squares spectrum gives the values of the proportional variances against
ffequency. Thus it gives the reduction in the variance of the time series
if the constitueﬂt)representing that frequency,is subtracted. The
- mathematical aspect of the comparison of these two methods would be
complicated. Therefore it was decided to carry out comparative tests by
analysing two identical time series by both the techniques. Two such tests

have been realised on the different types of data. In one analysis 50 years



of the monthly mean sea level of Baltimore, U.S.A., were used, In the

other 256 daily values of a residual tide (observed minus predicted sea

level) were analysed. For the power spectrum analysis of the mean sea

level, the maximum lag of 24 months was used giving a resolution of 0-25

c&cles per year. In the case of residual tide, the maximum lag used was

30 days with corresponding resolution of 0+5 cycles per month. Béth power
spectra were smoothed by applying "Hanning window". The computations were
carried out by means of the existing Algol standard procedure of the University
of Liverpool Department of Oceanography.

(a) Analysis of the Mean Sea Level of Baltimore

The power spectrum of the monthly mean sea level of Baltimore, see Fig. 2a,
brings out the well known annual and semi-annual periods clearly. The lqwer
frequencies are merged with the noise at the low frequency end of thé spectrum.
For fuller discussion see Rossiter [6]. The least squares spectrum, see
Fig. 24, not only locates the annual and semi-annual frequencies but at the
same time it shows up a number of low frequencies. These low frequencies
can be assigned to physical systems, such as 12.6 and 17.1 to being close to
the periods ascribed to sunspot activity and nodal tide (see [71). This
higher power of distinction in the low frequency band has been ?ointed out in
the references Vanilek [8], [91 already.

(b) Residual tide of Tower Pier

The data consisted of daily values of the amplitudes of the residuals.
The results are in Fig. 3%a and 3b. The~power spectrum indicates the presence
of 3, 4 and 7 aay periods. The lower frequencies are once again obscured in
the noise. Several long periods have been located by the least squares
spectrum in addition to the periods present in the power spectrum analysis.
In this analysis several of the low frequencies can be assigned to processes
like seasonal changes, monthly and fortnightly tides, see Quraishee [5]. The
remaining frequencies reflect most likely the interactions of different
influences like numerous combinations of seasonal varying oceanic quantities
such as currents, depths, ice boundaries, densities, etc,

L) Comparisons of the analyses of equi-interval and unequi-interval time

series
It has been mentioned in [8] and [9] that the least square spectrum can

be computed even for an unequi-interval time 'series. From practical aspects



this possibility is very useful as in the geophysical work one often
encounters the situation of discontinuous data. In order to show the
influence of discontinuities on the spectral image, Baltimore monthly mean
—sea level data of 599 months was disjointed by deliberately removing certain
data at random. Thus the total series was reduced to 559 observations,

The spectrum ¢f this series is in Fig. 2c. For comparison see tﬁe spectrum
of the original continuous data in Fig. 2d. The spectral values in both
cases have been normalised to give the proportionate variance. All the
significant periods present in the continuous data have beep brought out in:
the spectruh of the series of the unequi-interval data. Tbe major peaks at
yearly and half yearly periods are v;ry well located with almost the same
percentage of tﬁe total variance, Few minor peaks have shown up in the
unequi-interval analysis in the flat region of the equi-interval spectrum
just before half yearly period. They are insignificantly small as théir
magnitudes are of the order of 0+5% of the total variance. The overall
impression is that both spectra are well compatible for significant periods
while they vary slightly in locating insignificant ones. Experience shows
that for a lesser number of values in data, side bands seem to develop around
the major peaks.

5)  Cases of the "known" constituents in ¥

Let us consider the problem when we are to estimate the unknown periods
of a given real function F', defined on a set ﬂn of n scattered poinfs and
the constituents (“), s Cb.‘,_ g coey Cbm of which are ."known". These
constituents may be any real functions defined for argument fe:kn like
cosxt ’ sinxt (for fixed % ), algebraic functions ‘U y for A = 1y 2y eeey
exponential functions é?t (for fixed 2 ), numerical functions known
beforehand from earlier experiments or even functions defined separately
for different parts of f,,+ The latter is the case of discontinuous datum

when we can define the appropriate function as

{ —‘-or te Pc 7Zv‘l
i ¢f. (_'{:) = /
N0 e P,
where (P is the part of 72,,, in the shift of datum of which we are interested.
It is not necessary to know the magnitude of the "known" constituents since
these will be determined in the process of computation. If the magnitude
of a constituent is known then it is better to subtract the constituent at

the beginning, and disregard it from the analysis point of view completely.



Let us denote now :
= @ st = B0, im0
Q= sy 3 2= Fmez 3 b = Bme3
in order to achieve a uniform notation. Denoting m+3 =N we can write A
2 M 2
Slwy = T (FG) - Z3;4;t), , 5
'!:Ezn J“
where the coefficients = Sa,)az)...,’aN} of the generalised polynomial
N
'PN = Zaa- CLA' are determined by the set of normal eguations (3) for any
d=l -
w., In this case though, M. will consist of all scalar products of all
the combinztions of d); ’ ci)a‘ and the right hand sides will be given by

expressions :

L= ZFEOLE) , (=12, N. ¢
te?,

Here, of course, we assume that the system of functions ci) beu Ci)z) ) d)u}
is, for all concerned values of W , "linearly independent on 7Zn " so that

the equations (3) have unique solﬁtion for all w,.  Whether this a;ssumption
is fulfilled is to be established for every individual case as it( depends
not only upon the choice of ct) but on 7Zn as well,

For the complement 6" we can write :

S(w) = Z (zr&rm&) ~ PRCH) =
te ‘

7\
= zZaAZ QLN ~Z Z Z‘a@J o ;A
‘) t—e n 7[ [ ()e
Making use of (6) and substituting {’_i for .Zaj tZZ ch(‘c) C(’j@c)
) J" €dn
from (3),we can rewrite (7.1) as follows @
— ~N __'_’ '
¢ = 25'(1-23;8;:83. 7-2

i=t

Since the system 4) is supposedly linearly independent, we can write again

from (3) :

73

%) This expression is referred to as "prediction variance" in Munk
and Cartwright [3]. It shows how much the variance of F is

reduced when the appropriate "prediction" is subtracted.



Denoting the minors of M by A,-J' we get finally

8 = — ZZA . 74

de{:CM) (=1 ‘l&‘
We shall prove that providing 43 is on 72,, linearly independent for all

2
concerned w , © is invariant in any transformation F—»>F=F+l if L is

a linear combination

of 4),,4)2 ’ ...,C}nm., .

Under the described circumstances, (3) glves for any F and any fixed
frequency w one best fitting polynomial ? acb Similarly, the same
system for the same frequency gives for F’a polynomial 'P,: =_'5’d> .

Obviously, we can write for coefficients 3

g
3. MU 7
4, b
Denoting tZ” F) k) = f,é we get : .
I = ZFO&m z L&)cb @) = Leeal) vz N. 0
'té 17
Evidently, if we denote 3°%= 2+03 we obtain for Z_a.:
—t -
5:5 = MAe . - ¥

Inverting (11) and substituting for Al from (10) we can write finally :

N m+t .
YT bayddra =7 (I H@Wéd) Cal,2y .y N 12
j=‘(£eﬂn ) ! ) d g(teln J ) o a
Since 4) is linearly independent we are getting :
AL Le 1y2, 0y med
A3, = / 3
N
0 = me2, M3
and therefore :
—PN’ =—PN+ L . ) Wy

For the mean-quadratic distance we have :

ecv)’?;) = Q(F+L,Ry+L) = e (F, ) 5

and thereafter for the complements :
GCFIPI) = 6CF, R W&

The result then shows that any transformation of ¥ to¥+L as defined
above does not affect the spectral image. ~ Let us note here that from
this point of view the invariability of Q" in the transformation T -

¥ + const. is a paz_'ticular case of a more general feature.



Since we are entitled to add to the analysed function F any linear
combination of the “known" constituents without changing the transform &
we may as well choose such a combination that will make !3 Q’ met

equal to zero. It is not difficult to see from (10) that such a set of 'AJ'

. can be calculated from the following system of equations :

Yo )
. (3 o= - ) FA) QG te 1,2, )mel
j§ (EZ:F‘(J‘) 433 ()% é:Zh LA )%

V7

which is nothing else but again the system of normel equations for
coefficients of the best fitting generalised polynomial composed from the
"known" fuﬁctions.

Now, we can see from (7.4) that if we subtract from the given F the
best fitting polynomial ?m +; o calculated beforehand for the "kriowp"
constituents, the transform €’ of the new function ¥F’= F~R,  will be
identical with.the initial 6 although the formula for numerical computation

will become far simpler :

. > 8.
& & de‘ECM) Lzs—;:z] m-rzA '8!

Considering the described reduction of F as part of the whole process we

can finally write for § the following expression :

6w) = F(w)(&:z}:,a) woswt) + q_(w)%z f‘_’&)ssmt)ﬁ r(w) gf’a)cm{ E{ch) sinwt 182

"~ where P q_ ., are real, non-negative functions of @ depending on the
"known" constituents and 7Zn .

Formula (18.2) is valid for any /), since we have not limited ourselves
to any particular case and can thus be used for analysing any time series
iFa;)/. ’c} either equidistant or uneguidistant. For equiddistant time series
though, the functions F’ q s r acquire simpler form because the summation
. over t in individual scalar products can usually be expressed by simpler
formulae, In addition to thisy if the "gknown" as well as sought functions,
i.e. Lt)‘. Cl)2 4 seey (b.m, C}’tmn. -d’N s, are either even or odd on 72,. N r(w)
becomes zero. .

6) Treatment of functions containing trend

The simplest and most obvious application of the possibilities described
in § 5 is the treatment for functions containing trend, which is a very
common case in all geophysical sciences., We shall regard trend as linear

term of unknown magnitude and for simplicity, consider 71,, -3 72,.‘ E {:AT-&- (‘- ')}



L= 1,2,.-,n , h odd. Beside this, let us agree that symbol Z. will mean
summation over te M, if not stated otherwise.

In accordance with é 5, we shall begin with subtracting the term
C,+ Gt from the original function F . The coefficients C, , C, can be
determined from the following system of equations (see 17) 3

nC + 2t C, = ZF{)

7
zt.¢, + 7% C, ZEF(@) .

i

Since the functions 1 and t are on 7, obviously linearly independent, we
get one solution only, which can be written, due to our choice of M, ZIt becwoues 0,

as follows :

el = —-—L T‘F—(_,‘\ = -TF: 20.\
(8 "~ ; ,
C, - TEECY/TH. ' men

For computation purpose, the latter equation can be rewritten, considering

the relations :

* x YL
Tire TNl s- T B IR ¢+ 2R R

as follows : -

€.

"

-3 < SR .
T C‘+’J(‘n(n+‘3 \Z\L : (). e

Due to the choice of 77Zn again, functions 4)\(&):{: ' (134[":) =sinwt are
on M, even and g1 ,O):coswl are 0dd,  Thus the matrixM of the system
of normal equations degenerates into two independent matrices ME and Mo,

containing the scalar products of odd and even functions only respectively :

Zoo, 0 o Zhd|
M - 0 74);437_ Zd?zd)s 0 _ “ME) 0
0 Z‘bs‘.bz Z¢3¢3 0 0, M,

24)( C&A 0 0 24)4 4>4

Thus we get for the relevant minors :

Ass= T d det (M) = n det(Ms)
Azg = 0O , 23

Ay s T b, deb (M) = T det (M),

According to Laplace theorem (see for instance Fadejev, Fadejeva [2]),

we can write for M :



det (M) = det (MG>‘<£5£CME) 244

so that the formula 18.1, after substituting for de%(l!lt)and Ae{(}ng’

will be as follows :

L (EFesat)” (TFE) sin wt )™ i}
- 2 > . 2
Zeodwt - - (Teosul)*  Zsiwwt r-,]%g%—z‘)ﬁf%sinwf)z

In this final formula the denominators are functions of W only (as

stated in é 5) and can be obviously expressed in more convenient form for
computation. It can be proved that both denominators are positive for

we (0,4(n-0))

7) Comparison of analyses with and without excluding trend

Two different geophysical time series were selected for showihg the
effect of introducing one "known" constituent in the analysis, in this case
the secular trend. They are 60 years of monthly mean sea level observations
of Baltimore and 159 days of hourly tilt observations realised by means of
0.R.B. 88 quartz horizontal pendulum set up in N/S direction in the basement
of Bidston Observatory (Cheshire, England). .

(a) The Mean Sea Level of Baltimore

The spectrum of Baltimore mean sea level with the trend excluded is
in Fig. 2b. The effect of the consideration, comparing with Fig. 2d, is
most obvious for the low frequency peaks. The lowest frequency in a) is
suppressed and shifted towards the high frequency side. The other low
frequencies ére also shifted slightly (17.1 =» 16.9 years, 12.6 —>13.2,
10.0 —» 9.9, 6.8 ~+>7.2)yhile the image as a whole is more pronounced, especially
for strong periods, Note the annual period in particular.

(b) The Earth Crust Tilt

Three frequency bands - low, diurnal, semidiurnal ~ of the spectrum are
shown in Fig. 4a, 4b, 4c. To convey clearer meaning the spectrum this time
is plotted in units of "normalised variance", i.e. 974L. Spectrum with
trend included is plotted in dotted line, with trend excluded in plain.

The effect of excluding trend is marked again.in the intensification of
major peaks; note particularly the split in peak corresponding to the
combination of S;,I? ,l(, waves. The low frequency band is noticable for

the presence of weekly period, fortnightly tide and several periods in the

<



vicinity of one month - see Vaniek [9] [10]. The largest peak which is not

fully shown in Fig. 4a may be attributed to the large yearly constituent

usually present in tilt observations - see again Vanf¥ek [91 [101.
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